SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.17645/mac.9523

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

How Generative AI Went From Innovation to Risk: Discussions in the Korean Public Sphere

[Zeitschriftenartikel]

Kim, Sunghwan
Jung, Jaemin

Abstract

Technological progress breeds both innovation and potential risks, a duality exemplified by the recent debate over generative artificial intelligence (GAI). This study examines how GAI has become a perceived risk in the Korean public sphere. To explore this, we analyzed news articles (N = 56,468) an... mehr

Technological progress breeds both innovation and potential risks, a duality exemplified by the recent debate over generative artificial intelligence (GAI). This study examines how GAI has become a perceived risk in the Korean public sphere. To explore this, we analyzed news articles (N = 56,468) and public comments (N = 68,393) from early 2023 to mid-2024, a period marked by heightened interest in GAI. Our analysis focused on articles mentioning "generative artificial intelligence." Using the social amplification of risk framework (Kasperson et al., 1988), we investigated how risks associated with GAI are amplified or attenuated. To identify key topics, we employed the bidirectional encoder representations from transformers model on news content and public comments, revealing distinct media and public agendas. The findings show a clear divergence in risk perception between news media and public discourse. While the media's amplification of risk was evident, its influence remained largely confined to specific amplification stations. Moreover, the focus of public discussion is expected to shift from AI ethics and regulatory issues to the broader consequences of industrial change.... weniger

Thesaurusschlagwörter
künstliche Intelligenz; Risikokommunikation; technische Entwicklung; Südkorea; öffentliche Meinung; Risiko

Klassifikation
Medieninhalte, Aussagenforschung
Wirkungsforschung, Rezipientenforschung

Freie Schlagwörter
AI; ChatGPT; amplification stations; generative AI; public discourse; risk amplification; risk attenuation

Sprache Dokument
Englisch

Publikationsjahr
2025

Zeitschriftentitel
Media and Communication, 13 (2025)

Heftthema
AI, Media, and People: The Changing Landscape of User Experiences and Behaviors

ISSN
2183-2439

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.