Show simple item record

[journal article]

dc.contributor.authorZloch, Matthäusde
dc.contributor.authorAcosta, Maribelde
dc.contributor.authorHienert, Danielde
dc.contributor.authorConrad, Stefande
dc.contributor.authorDietze, Stefande
dc.date.accessioned2025-02-12T09:26:59Z
dc.date.available2025-02-12T09:26:59Z
dc.date.issued2020de
dc.identifier.issn2210-4968de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/99904
dc.description.abstractThe topological structure of RDF graphs inherently differs from other types of graphs, like social graphs, due to the pervasive existence of hierarchical relations (TBox), which complement transversal relations (ABox). Graph measures capture such particularities through descriptive statistics. Besides the classical set of measures established in the field of network analysis, such as size and volume of the graph or the type of degree distribution of its vertices, there has been some effort to define measures that capture some of the aforementioned particularities RDF graphs adhere to. However, some of them are redundant, computationally expensive, and not meaningful enough to describe RDF graphs. In particular, it is not clear which of them are efficient metrics to capture specific distinguishing characteristics of datasets in different knowledge domains (e.g., Cross Domain vs. Linguistics). In this work, we address the problem of identifying a minimal set of measures that is efficient, essential (non-redundant), and meaningful. Based on 54 measures and a sample of 280 graphs of nine knowledge domains from the Linked Open Data Cloud, we identify an essential set of 13 measures, having the capacity to describe graphs concisely. These measures have the capacity to present the topological structures and differences of datasets in established knowledge domains.de
dc.languageende
dc.subject.ddcNaturwissenschaftende
dc.subject.ddcScienceen
dc.subject.otherRDF graph; RDF graph profiling; graph measures; graph topology; measure assessmentde
dc.titleCharaterizing RDF graphs through graph-based measures - framework and assessmentde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urllocalfile:/var/local/dda-files/prod/crawlerfiles/4c842a9c5eaf4d048608de24b2fce32b/4c842a9c5eaf4d048608de24b2fce32b.pdfde
dc.source.journalSemantic Web
dc.source.volume12de
dc.publisher.countryUSAde
dc.source.issue5de
dc.subject.classozNaturwissenschaften, Technik(wissenschaften), angewandte Wissenschaftende
dc.subject.classozNatural Science and Engineering, Applied Sciencesen
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
ssoar.contributor.institutionGESISde
internal.statusformal und inhaltlich fertig erschlossende
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo789-812de
internal.identifier.classoz50200
internal.identifier.journal3336
internal.identifier.document32
internal.identifier.ddc500
dc.identifier.doihttps://doi.org/10.3233/SW-200409de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
ssoar.wgl.collectiontruede
internal.dda.referencecrawler-deepgreen-957@@4c842a9c5eaf4d048608de24b2fce32b
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record