SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.082 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-99572-0

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

The Datafied Society: Challenges and Strategies in Big Data Research for Social Sciences and Humanities

[Zeitschriftenartikel]

Mohseni Ahooei, Ebrahim

Abstract

The advent of big data marks a profound shift in our epistemological framework, introducing a new knowledge paradigm where the social landscape is shaped by data processing, perceived as both comprehensive and natural. This transformative shift challenges traditional notions of human agency in socie... mehr

The advent of big data marks a profound shift in our epistemological framework, introducing a new knowledge paradigm where the social landscape is shaped by data processing, perceived as both comprehensive and natural. This transformative shift challenges traditional notions of human agency in societal understanding, positioning empirical quantification at the forefront of inquiry. Beyond philosophical implications, pragmatic challenges abound in big data research - from issues of commensuration and the influence of action grammars to the dominance of correlational over causal relationships, the prevalence of everyday data over historical archives, and the pervasive impact of algorithms on data ecosystems. This manuscript undertakes a comprehensive exploration of these challenges, proposing strategies for navigating them within emerging disciplines such as Digital Humanities, Social Computing, and Cultural Analysis. Methodologically anchored in constructivist principles and critical discourse analysis (CDA), the study investigates how socio-cultural contexts shape data and knowledge production. Drawing on extensive literature and meta-analyses, it synthesizes diverse perspectives to underscore the necessity for methodological innovation and reflexivity in addressing the complexities of big data research, ensuring the integrity and depth of social inquiry amidst evolving data-driven methodologies.... weniger

Thesaurusschlagwörter
Daten; Sozialwissenschaft; Geisteswissenschaft; Datengewinnung; Datenverarbeitung; Quantifizierung; Sozialforschung

Klassifikation
Forschungsarten der Sozialforschung
interaktive, elektronische Medien

Freie Schlagwörter
big data; cultural analysis; datafied society; digital humanities; social computing

Sprache Dokument
Englisch

Publikationsjahr
2024

Seitenangabe
S. 177-207

Zeitschriftentitel
Journal of Cyberspace Studies, 8 (2024) 2

DOI
https://doi.org/10.22059/jcss.2024.378294.1106

ISSN
2588-5502

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht-kommerz. 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.