Show simple item record

[journal article]

dc.contributor.authorSolomou, Solonde
dc.contributor.authorSengupta, Ulyssesde
dc.date.accessioned2024-12-23T10:58:36Z
dc.date.available2024-12-23T10:58:36Z
dc.date.issued2025de
dc.identifier.issn2183-7635de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/98670
dc.description.abstractArtificial intelligence is a transformational development across multiple research areas within urban planning. Urban simulation models have been an important part of urban planning for decades. Current advances in artificial intelligence have changed the scope of these models by enabling the incorporation of more complex agent behaviours in models aimed at understanding dweller behaviour within alternative future scenarios. The research presented in this article is situated in location choice modelling. It compares outcomes of two multi-agent systems, testing intelligent computer agent decision-making with selected behavioural patterns associated with human decision-making, given the same choices and scenarios. The majority of agent-based urban simulation models in use base the decision-making of agents on logic-based agent architecture and utility maximisation theory. This article explores the use of cognitive agent architecture as an alternative approach to endow agents with memory representation and experiential learning, thus enhancing their intelligence. The study evaluates the model’s suitability, strengths, and weaknesses, by comparing it against the results of a control model featuring commonly used logic-based architecture. The findings showcase the improved ability of cognitive-based intelligent agents to display dynamic market behaviours. The conclusion discusses the potential of utilising cognitive agent architectures and the ability of these models to investigate complex urban patterns incorporating unpredictability, uncertainty, non-linearity, adaptability, evolution, and emergence. The experiment demonstrates the possibility of modelling with more intelligent agents for future city planning and policy.de
dc.languageende
dc.subject.ddcStädtebau, Raumplanung, Landschaftsgestaltungde
dc.subject.ddcLandscaping and area planningen
dc.subject.otheragent-based modelling; cognitive agents; household location choice; intelligent agents; market dynamics; planning tools; urban simulationde
dc.titleSimulating Complex Urban Behaviours With AI: Incorporating Improved Intelligent Agents in Urban Simulation Modelsde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urlhttps://www.cogitatiopress.com/urbanplanning/article/view/8561/4143de
dc.source.journalUrban Planning
dc.source.volume10de
dc.publisher.countryPRTde
dc.subject.classozRaumplanung und Regionalforschungde
dc.subject.classozArea Development Planning, Regional Researchen
dc.subject.thesozkünstliche Intelligenzde
dc.subject.thesozartificial intelligenceen
dc.subject.thesozKomplexitätde
dc.subject.thesozcomplexityen
dc.subject.thesozStadtplanungde
dc.subject.thesozurban planningen
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10043031
internal.identifier.thesoz10049430
internal.identifier.thesoz10035393
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
internal.identifier.classoz20700
internal.identifier.journal794
internal.identifier.document32
internal.identifier.ddc710
dc.source.issuetopicAI for and in Urban Planningde
dc.identifier.doihttps://doi.org/10.17645/up.8561de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.dda.referencehttps://www.cogitatiopress.com/urbanplanning/oai/@@oai:ojs.cogitatiopress.com:article/8561
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record