Show simple item record

[journal article]

dc.contributor.authorKirkizh, Norade
dc.contributor.authorUlloa, Robertode
dc.contributor.authorStier, Sebastiande
dc.contributor.authorPfeffer, Jürgende
dc.date.accessioned2024-12-13T07:12:58Z
dc.date.available2024-12-13T07:12:58Z
dc.date.issued2024de
dc.identifier.issn1933-169Xde
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/98461
dc.description.abstractAnecdotal evidence suggests that the surge of populism and subsequent political polarization might make voters' political preferences more detectable from digital trace data. This potential scenario could expose voters to the risk of being targeted and easily influenced by political actors. This study investigates the linkage between over 19,000,000 website visits, tracked from 1,003 users in Germany, and their survey responses to explore whether website choices can accurately predict political attitudes across five dimensions: Immigration, democracy, issues (such as climate and the European Union), populism, and trust. Our findings indicate a limited ability to identify political attitudes from individuals' website visits. Our most effective machine learning algorithm predicted interest in politics and attitudes toward democracy but with dependency on model parameters. Although website categories exhibited suggestive patterns, they only marginally distinguished between individuals with anti- or pro-immigration attitudes, as well as those with populist or mainstream attitudes. This further confirm the reliability of surveys in measuring attitudes compared to digital trace data and, from a normative perspective, suggests that the potential to extract sensitive political information from online behavioral data, which could be utilized for microtargeting, remains limited.de
dc.languageende
dc.subject.ddcPolitikwissenschaftde
dc.subject.ddcPolitical scienceen
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.otherweb tracking data; machine learning; surveys; life-stylede
dc.titlePredicting political attitudes from web tracking data: a machine learning approachde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalJournal of Information Technology & Politics
dc.source.volume21de
dc.publisher.countryGBRde
dc.source.issue4de
dc.subject.classozpolitische Willensbildung, politische Soziologie, politische Kulturde
dc.subject.classozPolitical Process, Elections, Political Sociology, Political Cultureen
dc.subject.classozErhebungstechniken und Analysetechniken der Sozialwissenschaftende
dc.subject.classozMethods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methodsen
dc.subject.thesozPopulismusde
dc.subject.thesozpopulismen
dc.subject.thesozPolarisierungde
dc.subject.thesozpolarizationen
dc.subject.thesozpolitische Meinungde
dc.subject.thesozpolitical opinionen
dc.subject.thesozpolitische Einstellungde
dc.subject.thesozpolitical attitudeen
dc.subject.thesozWebsitede
dc.subject.thesozwebsiteen
dc.subject.thesozInternetde
dc.subject.thesozInterneten
dc.subject.thesozDemokratiede
dc.subject.thesozdemocracyen
dc.subject.thesozVertrauende
dc.subject.thesozconfidenceen
dc.subject.thesozDatenschutzde
dc.subject.thesozdata protectionen
dc.subject.thesozEinflussde
dc.subject.thesozinfluenceen
dc.subject.thesozBundesrepublik Deutschlandde
dc.subject.thesozFederal Republic of Germanyen
dc.identifier.urnurn:nbn:de:0168-ssoar-98461-1
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
ssoar.contributor.institutionGESISde
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10055018
internal.identifier.thesoz10063279
internal.identifier.thesoz10052046
internal.identifier.thesoz10041739
internal.identifier.thesoz10064822
internal.identifier.thesoz10040528
internal.identifier.thesoz10037672
internal.identifier.thesoz10061508
internal.identifier.thesoz10040560
internal.identifier.thesoz10037908
internal.identifier.thesoz10037571
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo564-577de
internal.identifier.classoz10504
internal.identifier.classoz10105
internal.identifier.journal1517
internal.identifier.document32
internal.identifier.ddc320
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.1080/19331681.2024.2316679de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.pdf.validfalse
internal.pdf.wellformedtrue
internal.pdf.encryptedfalse


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record