Show simple item record

[journal article]

dc.contributor.authorSpandagos, Constantinede
dc.contributor.authorTovar Reaños, Miguel Angelde
dc.contributor.authorLynch, Muireann Á.de
dc.date.accessioned2024-11-21T13:00:24Z
dc.date.available2024-11-21T13:00:24Z
dc.date.issued2023de
dc.identifier.issn0140-9883de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/98025
dc.description.abstractThe prevalence of energy poverty as a major challenge in numerous countries, the escalating energy crisis and the need to build just supporting mechanisms within the net zero energy transition add impetus to improving our ability to accurately predict energy vulnerable households. In Europe, this is hindered by limited recognition of the fact that energy vulnerable households are not necessarily income poor (and vice versa). Artificial Intelligence, and machine learning techniques in particular, may be applied to improve the targeting mechanism of energy poverty schemes, enabling accurate prediction of energy vulnerable households via objective, publicly available data. However, such applications are still limited, especially across a large number of countries. In response to the above, we develop an innovative machine learning framework for accurate prediction and fair targeting of energy poor households across all the current members of the European Union, and the United Kingdom. While we explore various machine learning algorithms, most of our analysis is performed using a Random Forest classifier. Our approach to explore energy poverty beyond income reveals household-level and country-level predictors of energy poverty, such as dwelling condition, energy efficiency, social protection payments and gas supplier switching rates. We also demonstrate how machine learning algorithms offer straightforward visualization of the mechanism that determines the energy poor classification, improving the transparency of alleviation schemes and assisting policy-makers in setting effective thresholds for assistance allocation. Finally, we evaluate the potential fairness of alleviation schemes and demonstrate that basing their targeting exclusively on income-relevant or social welfare-relevant criteria would be ineffective and result in significant numbers of energy poor households being excluded from energy assistance.de
dc.languageende
dc.subject.ddcÖkologiede
dc.subject.ddcEcologyen
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.otherenergy poverty prediction; energy poverty targeting; machine learning; just energy transitions; EU-SILC 2010-2020de
dc.titleEnergy poverty prediction and effective targeting for just transitions with machine learningde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalEnergy Economics
dc.source.volume128de
dc.publisher.countryNLDde
dc.subject.classozÖkologie und Umweltde
dc.subject.classozEcology, Environmenten
dc.subject.classozSozialpolitikde
dc.subject.classozSocial Policyen
dc.subject.thesozEnergiede
dc.subject.thesozenergyen
dc.subject.thesozEnergiepolitikde
dc.subject.thesozenergy policyen
dc.subject.thesozEnergieversorgungde
dc.subject.thesozenergy supplyen
dc.subject.thesozKostende
dc.subject.thesozcostsen
dc.subject.thesozKrisede
dc.subject.thesozcrisisen
dc.subject.thesozKrisenbewältigungde
dc.subject.thesozcrisis management (psych.)en
dc.subject.thesozPrivathaushaltde
dc.subject.thesozprivate householden
dc.subject.thesozEinkommende
dc.subject.thesozincomeen
dc.subject.thesozUngleichheitde
dc.subject.thesozinequalityen
dc.subject.thesozWohnverhältnissede
dc.subject.thesozhousing conditionsen
dc.subject.thesozEuropade
dc.subject.thesozEuropeen
dc.subject.thesozGroßbritanniende
dc.subject.thesozGreat Britainen
dc.subject.thesozEU-Staatde
dc.subject.thesozEU member stateen
dc.identifier.urnurn:nbn:de:0168-ssoar-98025-2
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
ssoar.contributor.institutionFDBde
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10035291
internal.identifier.thesoz10042069
internal.identifier.thesoz10041846
internal.identifier.thesoz10036279
internal.identifier.thesoz10042064
internal.identifier.thesoz10040415
internal.identifier.thesoz10035966
internal.identifier.thesoz10036080
internal.identifier.thesoz10041153
internal.identifier.thesoz10062630
internal.identifier.thesoz10042879
internal.identifier.thesoz10042102
internal.identifier.thesoz10058883
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo1-19de
internal.identifier.classoz20900
internal.identifier.classoz11000
internal.identifier.journal2404
internal.identifier.document32
internal.identifier.ddc577
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.1016/j.eneco.2023.107131de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.pdf.validfalse
internal.pdf.wellformedtrue
internal.pdf.encryptedfalse


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record