Show simple item record

[journal article]

dc.contributor.authorLipps, Oliverde
dc.contributor.authorKuhn, Ursinade
dc.date.accessioned2024-11-14T11:05:49Z
dc.date.available2024-11-14T11:05:49Z
dc.date.issued2023de
dc.identifier.issn1864-3361de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/97860
dc.description.abstractUnlike for cross-sectional data, there is only little research on income imputation for longitudinal data. The current best practise is the Little and Su (L&S) method, which is based on individual-specific mean income over time. While the L&S method performs well for cross-sectional analysis, longitudinal estimates such as income mobility or fixed effects models tend to be biased. We argue that this bias arises from the L&S method treating within-individual variance - which is the basis of longitudinal analysis – as random. In this paper, we present an imputation approach, which uses information available in the missing wave which correlated with a changed income. The expected value is the sum of the individual mean across the observed waves and the within-individual deviance for the wave with missing information. We evaluate this new approach using employment income from the Swiss Household Panel and allow data to be missing at random and not at random. We compare different variants of this approach to the listwise deletion and the L&S method. The missingness mechanisms are estimated on the basis of an external data source containing both registry information and survey questions on income. We use performance criteria proposed in previous evaluations of longitudinal imputation methods. As an additional criterion, we consider the performance in application examples, by testing the bias of regression coefficients in typical longitudinal multivariate regression models. Our results indicate no systematic difference between imputation methods for cross-sectional criteria and for multivariate regression models, but a better performance of the new approach for longitudinal criteria. In applied fixed effects models, no imputation generally reduce bias compared to listwise deletion.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.otherlongitudinal imputation; row-and-column method; Little and Su method; panel data; nonresponse mechanism; Swiss Household Panel; EU-SILC 2016de
dc.titleIncome Imputation in Longitudinal Surveys: A Within-Individual Panel-Regression Approachde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalSurvey Research Methods
dc.source.volume17de
dc.publisher.countryDEUde
dc.source.issue2de
dc.subject.classozErhebungstechniken und Analysetechniken der Sozialwissenschaftende
dc.subject.classozMethods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methodsen
dc.subject.thesozUmfrageforschungde
dc.subject.thesozsurvey researchen
dc.subject.thesozLängsschnittuntersuchungde
dc.subject.thesozlongitudinal studyen
dc.subject.thesozPanelde
dc.subject.thesozpanelen
dc.subject.thesozDatengewinnungde
dc.subject.thesozdata captureen
dc.subject.thesozEinkommende
dc.subject.thesozincomeen
dc.subject.thesozEinkommensverteilungde
dc.subject.thesozincome distributionen
dc.identifier.urnurn:nbn:de:0168-ssoar-97860-1
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
ssoar.contributor.institutionFDBde
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10040714
internal.identifier.thesoz10050423
internal.identifier.thesoz10054018
internal.identifier.thesoz10040547
internal.identifier.thesoz10036080
internal.identifier.thesoz10041667
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo159-175de
internal.identifier.classoz10105
internal.identifier.journal674
internal.identifier.document32
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.18148/srm/2023.v17i2.7949de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.pdf.validfalse
internal.pdf.wellformedtrue
internal.pdf.encryptedfalse


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record