Show simple item record

[journal article]

dc.contributor.authorMinderop, Isabellade
dc.date.accessioned2024-11-14T10:47:34Z
dc.date.available2024-11-14T10:47:34Z
dc.date.issued2023de
dc.identifier.issn2296-4754de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/97858
dc.description.abstractPanel attrition is a major problem for panel survey infrastructures. When panelists attrit from a panel survey, the infrastructure is faced with (i) the costs of recruiting new respondents, (ii) a broken timeline of existing data, and (iii) potential nonresponse bias. Previous studies have shown that panel attrition can be predicted using respondents' response time. However, response time has been operationalised in multiple ways, such as (i) the number of days it takes respondents to participate, (ii) the number of contact attempts made by the data collection organisation, and (iii) the proportion of respondents who have participated prior to a given respondent. Due to the different operationalisations of response time, it is challenging to identify the best measurement to use for predicting panel attrition. In the present study, we used data from the GESIS Panel - which is a German probability-based mixed-mode (i.e., web and mail) panel survey - to compare different operationalisations of response time using multiple logistic random-effects models. We found both that the different operationalisations have similar relationships to attrition and that our models correctly predict a similar amount of attrition.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.otherlate respondents; operationalisation comparisons; panel attrition; paradata; response time; GESIS Panel - Extended Edition, ZA5664 v35.0.0 (doi:10.4232/1.13435)de
dc.titlePredicting panel attrition using multiple operationalisations of response timede
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalSurvey Methods: Insights from the Field
dc.source.volume1de
dc.publisher.countryCHEde
dc.source.issue2de
dc.subject.classozErhebungstechniken und Analysetechniken der Sozialwissenschaftende
dc.subject.classozMethods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methodsen
dc.subject.thesozUmfrageforschungde
dc.subject.thesozsurvey researchen
dc.subject.thesozPanelde
dc.subject.thesozpanelen
dc.subject.thesozAntwortverhaltende
dc.subject.thesozresponse behavioren
dc.subject.thesozDatengewinnungde
dc.subject.thesozdata captureen
dc.subject.thesozDatenqualitätde
dc.subject.thesozdata qualityen
dc.identifier.urnurn:nbn:de:0168-ssoar-97858-6
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
ssoar.contributor.institutionFDBde
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10040714
internal.identifier.thesoz10054018
internal.identifier.thesoz10035808
internal.identifier.thesoz10040547
internal.identifier.thesoz10055811
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
internal.identifier.classoz10105
internal.identifier.journal472
internal.identifier.document32
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.13094/SMIF-2023-00009de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.pdf.validfalse
internal.pdf.wellformedtrue
internal.pdf.encryptedfalse


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record