Show simple item record

[journal article]

dc.contributor.authorNicolussi, Federicade
dc.contributor.authorCazzaro, Manuelade
dc.contributor.authorRudas, Tamásde
dc.date.accessioned2024-11-14T10:13:13Z
dc.date.available2024-11-14T10:13:13Z
dc.date.issued2024de
dc.identifier.issn1613-9798de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/97853
dc.description.abstractWhen analyzing data in contingency tables it is frequent to deal with sparse data, particularly when the sample size is small relative to the number of cells. Most analyses of this kind are interpreted in an exploratory manner and even if tests are performed, little attention is paid to statistical power. This paper proposes a method we call redundant procedure, which is based on the union-intersection principle and increases test power by focusing on specific components of the hypothesis. This method is particularly helpful when the hypothesis to be tested can be expressed as the intersections of simpler models, such that at least some of them pertain to smaller table marginals. This situation leads to working on tables that are naturally denser. One advantage of this method is its direct application to (chain) graphical models. We illustrate the proposal through simulations and suggest strategies to increase the power of tests in sparse tables. Finally, we demonstrate an application to the EU-SILC dataset.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.otherCategorical variables; MC simulation; Union intersection principle; Redundant test; Graphical model; EU-SILC 2016de
dc.titleImproving the power of hypothesis tests in sparse contingency tablesde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalStatistical Papers
dc.source.volume65de
dc.publisher.countryDEUde
dc.source.issue3de
dc.subject.classozErhebungstechniken und Analysetechniken der Sozialwissenschaftende
dc.subject.classozMethods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methodsen
dc.subject.thesozDatende
dc.subject.thesozdataen
dc.subject.thesozAnalysede
dc.subject.thesozanalysisen
dc.subject.thesozKontingenzde
dc.subject.thesozcontingencyen
dc.subject.thesozHypothesenprüfungde
dc.subject.thesozhypothesis testingen
dc.subject.thesozTestde
dc.subject.thesoztesten
dc.subject.thesozSimulationde
dc.subject.thesozsimulationen
dc.identifier.urnurn:nbn:de:0168-ssoar-97852-6
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
ssoar.contributor.institutionFDBde
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10034708
internal.identifier.thesoz10034712
internal.identifier.thesoz10049681
internal.identifier.thesoz10046973
internal.identifier.thesoz10037953
internal.identifier.thesoz10037865
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo1841-1867de
internal.identifier.classoz10105
internal.identifier.journal3164
internal.identifier.document32
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.1007/s00362-023-01473-6de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.pdf.validtrue
internal.pdf.wellformedtrue
internal.pdf.encryptedfalse


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record