Show simple item record

[journal article]

dc.contributor.authorHamdani, Jumanade
dc.contributor.authorAntuña Molina, Pablode
dc.contributor.authorLeva Fuentes, Lucíade
dc.contributor.authorShawqy, Heshamde
dc.contributor.authorRossi, Gabriellade
dc.contributor.authorAndrés León, Davidde
dc.date.accessioned2024-11-08T09:16:20Z
dc.date.available2024-11-08T09:16:20Z
dc.date.issued2025de
dc.identifier.issn2183-7635de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/97670
dc.description.abstractPlazas are an essential pillar of public life in our cities. Historically, they have been seen as public fora, hosting public events that fostered trade, interaction, and debate. However, with the rise of modern urbanism, city planners considered them as part of a larger strategic development scheme overlooking their social importance. As a result, plazas have lost their function and value. In recent years, awareness has risen of the need to re-activate these public spaces to strive for social inclusion and urban resilience. Geometric and urban features of plazas and their surroundings often suggest what kinds of usage the public can make of them. In this project, we explore the application of machine learning to predict the suitability of events in public spaces, aiming to enhance urban plaza design. Learning from traditional urbanism indicators, we consider factors associated with the features of the public space, such as the number of people and the high degree of comfort, which are evolved from three subcategories: external factors, geometric shape, and design factors. We acknowledge that the predictive capability of our model is constrained by a relatively small dataset, comprising 15 real plazas in Madrid augmented digitally to 2025 fictional scenarios through self-organising maps. The article details the methods to quantify and enumerate quantitative urban features. With a categorical target variable, a classification model is trained to predict the type of event in the urban space. The model is then evaluated locally in Grasshopper by visualising a parametric verified geometry and deploying the model on other existing plazas worldwide regarding geographical proximity to Madrid, where to share or not the same cultural and environmental conditions. Despite these limitations, our findings offer valuable insights into the potential of machine learning in urban planning, suggesting pathways for future research to expand upon this foundational study.de
dc.languageende
dc.subject.ddcStädtebau, Raumplanung, Landschaftsgestaltungde
dc.subject.ddcLandscaping and area planningen
dc.subject.otherMadrid; data classification; event prediction; machine learning; plaza; public squares; self-organising mapsde
dc.titleWhat Is My Plaza for? Implementing a Machine Learning Strategy for Public Events Prediction in the Urban Squarede
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urlhttps://www.cogitatiopress.com/urbanplanning/article/view/8551/4030de
dc.source.journalUrban Planning
dc.source.volume10de
dc.publisher.countryPRTde
dc.subject.classozRaumplanung und Regionalforschungde
dc.subject.classozArea Development Planning, Regional Researchen
dc.subject.thesozSpaniende
dc.subject.thesozSpainen
dc.subject.thesozStadtplanungde
dc.subject.thesozurban planningen
dc.subject.thesozöffentlicher Raumde
dc.subject.thesozpublic spaceen
dc.subject.thesozPrognosede
dc.subject.thesozprognosisen
dc.subject.thesozStädtebaude
dc.subject.thesoztown planningen
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10058646
internal.identifier.thesoz10035393
internal.identifier.thesoz10053593
internal.identifier.thesoz10036432
internal.identifier.thesoz10059119
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
internal.identifier.classoz20700
internal.identifier.journal794
internal.identifier.document32
internal.identifier.ddc710
dc.source.issuetopicAI for and in Urban Planningde
dc.identifier.doihttps://doi.org/10.17645/up.8551de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.dda.referencehttps://www.cogitatiopress.com/urbanplanning/oai/@@oai:ojs.cogitatiopress.com:article/8551
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record