Show simple item record

[journal article]

dc.contributor.authorDelavar, Yasinde
dc.contributor.authorGamble, Sarahde
dc.contributor.authorSaldana-Ochoa, Karlade
dc.date.accessioned2024-11-07T12:02:23Z
dc.date.available2024-11-07T12:02:23Z
dc.date.issued2025de
dc.identifier.issn2183-7635de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/97648
dc.description.abstractThis study employs a systematic literature review (PRISMA methodology) to investigate the integration of Artificial Intelligence (AI) in walkability assessments conducted between 2012 and 2022. Analyzing 34 articles exploring data types, factors, and AI tools, the review emphasizes the value of utilizing diverse datasets, particularly street view images, to train supersized AI models. This approach fosters efficient, unbiased assessments and offers deep insights into pedestrian environment interactions. Furthermore, AI tools empower walkability assessment by facilitating mapping, scoring, designing pedestrian routes, and uncovering previously unconsidered factors. The current shift from large-scale spatial data analysis (allocentric perspective) to a ground-level view (egocentric perspective) and physical and perceptual features of walking introduces a subjective lens into current walkability assessment tools. However, the efficacy of current methods in addressing non-visual aspects of human perception and their applicability across diverse demographics remains debatable. Finally, the lack of integration of emerging technologies like virtual/augmented reality and digital twin leaves a significant gap in research, inviting further study to determine their efficacy in enhancing the current methods and, in general, understanding the interaction of humans and cities.de
dc.languageende
dc.subject.ddcStädtebau, Raumplanung, Landschaftsgestaltungde
dc.subject.ddcLandscaping and area planningen
dc.subject.otherdigital twin; human perception; urban built environment; walkability; walkability assessment; walkable environmentde
dc.titlePast, Present, and Future Perspectives on the Integration of AI Into Walkability Assessment Tools: A Systematic Reviewde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urlhttps://www.cogitatiopress.com/urbanplanning/article/view/8518/3922de
dc.source.journalUrban Planning
dc.source.volume10de
dc.publisher.countryPRTde
dc.subject.classozRaumplanung und Regionalforschungde
dc.subject.classozArea Development Planning, Regional Researchen
dc.subject.thesozkünstliche Intelligenzde
dc.subject.thesozartificial intelligenceen
dc.subject.thesozneue Technologiede
dc.subject.thesoznew technologyen
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10043031
internal.identifier.thesoz10053171
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
internal.identifier.classoz20700
internal.identifier.journal794
internal.identifier.document32
internal.identifier.ddc710
dc.source.issuetopicAI for and in Urban Planningde
dc.identifier.doihttps://doi.org/10.17645/up.8518de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.dda.referencehttps://www.cogitatiopress.com/urbanplanning/oai/@@oai:ojs.cogitatiopress.com:article/8518
ssoar.urn.registrationfalsede


Files in this item

No Thumbnail [100%x80]

This item appears in the following Collection(s)

Show simple item record