Show simple item record

[journal article]

dc.contributor.authorForster, Juliade
dc.contributor.authorBindreiter, Stefande
dc.contributor.authorUhlhorn, Birthede
dc.contributor.authorRadinger-Peer, Verenade
dc.contributor.authorJiricka-Pürrer, Alexandrade
dc.date.accessioned2024-11-07T11:48:42Z
dc.date.available2024-11-07T11:48:42Z
dc.date.issued2025de
dc.identifier.issn2183-7635de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/97644
dc.description.abstractThe impacts on living conditions and natural habitats deriving from planning decisions require complex analysis of cross-acting factors, which in turn require interdisciplinary data. At the municipal level, both data collection and the knowledge needed to interpret it are often lacking. Additionally, climate change and species extinction demand rapid and effective policies in order to preserve soil resources for future generations. Ex-ante evaluation of planning measures is insufficient owing to a lack of data and linear models capable of simulating the impacts of complex systemic relationships. Integrating machine learning (ML) into systemic planning increases awareness of impacts by providing decision-makers with predictive analysis and risk mitigation tools. ML can predict future scenarios beyond rigid linear models, identifying patterns, trends, and correlations within complex systems and depicting hidden relationships. This article focuses on a case study of single-family houses in Upper Austria, chosen for its transferability to other regions. It critically reflects on an ML approach, linking data on past and current planning regulations and decisions to the physical environment. We create an inventory of categories of areas with different features to inform nature-based solutions and backcasting planning decisions and build a training dataset for ML models. Our model predicts the effects of planning decisions on soil sealing. We discuss how ML can support local planning by providing area assessments in soil sealing within the case study. The article presents a working approach to planning and demonstrates that more data is needed to achieve well-founded planning statements.de
dc.languageende
dc.subject.ddcStädtebau, Raumplanung, Landschaftsgestaltungde
dc.subject.ddcLandscaping and area planningen
dc.subject.otherGIS analysis; machine learning; nature-based solutions; spatial analysisde
dc.titleA Machine Learning Approach to Adapt Local Land Use Planning to Climate Changede
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urlhttps://www.cogitatiopress.com/urbanplanning/article/view/8562/3997de
dc.source.journalUrban Planning
dc.source.volume10de
dc.publisher.countryPRTde
dc.subject.classozRaumplanung und Regionalforschungde
dc.subject.classozArea Development Planning, Regional Researchen
dc.subject.thesozRaumplanungde
dc.subject.thesozspatial planningen
dc.subject.thesozkünstliche Intelligenzde
dc.subject.thesozartificial intelligenceen
dc.subject.thesozKlimawandelde
dc.subject.thesozclimate changeen
dc.subject.thesozOberösterreichde
dc.subject.thesozUpper Austriaen
dc.subject.thesozÖsterreichde
dc.subject.thesozAustriaen
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10043747
internal.identifier.thesoz10043031
internal.identifier.thesoz10061949
internal.identifier.thesoz10053481
internal.identifier.thesoz10040166
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
internal.identifier.classoz20700
internal.identifier.journal794
internal.identifier.document32
internal.identifier.ddc710
dc.source.issuetopicAI for and in Urban Planningde
dc.identifier.doihttps://doi.org/10.17645/up.8562de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.dda.referencehttps://www.cogitatiopress.com/urbanplanning/oai/@@oai:ojs.cogitatiopress.com:article/8562
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record