Show simple item record

[journal article]

dc.contributor.authorHaensch, Anna-Carolinade
dc.contributor.authorBartlett, Jonathande
dc.contributor.authorWeiß, Berndde
dc.date.accessioned2024-10-23T14:45:04Z
dc.date.available2024-10-23T14:45:04Z
dc.date.issued2024de
dc.identifier.issn1552-8294de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/97347
dc.description.abstractDiscrete-time survival analysis (DTSA) models are a popular way of modeling events in the social sciences. However, the analysis of discrete-time survival data is challenged by missing data in one or more covariates. Negative consequences of missing covariate data include efficiency losses and possible bias. A popular approach to circumventing these consequences is multiple imputation (MI). In MI, it is crucial to include outcome information in the imputation models. As there is little guidance on how to incorporate the observed outcome information into the imputation model of missing covariates in DTSA, we explore different existing approaches using fully conditional specification (FCS) MI and substantive-model compatible (SMC)-FCS MI. We extend SMC-FCS for DTSA and provide an implementation in the smcfcs R package. We compare the approaches using Monte Carlo simulations and demonstrate a good performance of the new approach compared to existing approaches.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.othermultiple imputation; event analysis; fully conditional specification; missing data; smcfcs; survival analysis; The German Family Panel (pairfam) (ZA5678, version 8.0.0)de
dc.titleMultiple imputation of partially observed covariates in discrete-time survival analysisde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urllocalfile:/var/local/dda-files/prod/crawlerfiles/1a54806f731b49aba7bda0bd7b75baec/1a54806f731b49aba7bda0bd7b75baec.pdfde
dc.source.journalSociological Methods & Research
dc.source.volume53de
dc.publisher.countryGBRde
dc.source.issue4de
dc.subject.classozErhebungstechniken und Analysetechniken der Sozialwissenschaftende
dc.subject.classozMethods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methodsen
dc.subject.thesozFamilienforschungde
dc.subject.thesozfamily researchen
dc.subject.thesozDatengewinnungde
dc.subject.thesozdata captureen
dc.subject.thesozDatende
dc.subject.thesozdataen
dc.subject.thesozAnalysede
dc.subject.thesozanalysisen
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
ssoar.contributor.institutionGESISde
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10043266
internal.identifier.thesoz10040547
internal.identifier.thesoz10034708
internal.identifier.thesoz10034712
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo2019-2045de
internal.identifier.classoz10105
internal.identifier.journal414
internal.identifier.document32
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.1177/00491241221140147de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
ssoar.wgl.collectiontruede
internal.dda.referencecrawler-deepgreen-753@@1a54806f731b49aba7bda0bd7b75baec
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record