SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.32609/j.ruje.6.47009

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

A macroeconometric model for Russia

[journal article]

Bolatbayeva, Aizhan
Tolepbergen, Alisher
Abilov, Nurdaulet

Abstract

The paper outlines a structural macroeconometric model for the economy of Russia. The aim of the research is to analyze how the domestic economy functions, generate forecasts for important macroeconomic indicators and evaluate the responses of main endogenous variables to various shocks. The model i... view more

The paper outlines a structural macroeconometric model for the economy of Russia. The aim of the research is to analyze how the domestic economy functions, generate forecasts for important macroeconomic indicators and evaluate the responses of main endogenous variables to various shocks. The model is estimated based on quarterly data starting from 2001 to 2019. The majority of the equations are specified in error correction form due to the non-stationarity of variables. Stochastic simulation is used to solve the model for ex-post and ex-ante analysis. We compare forecasts of the model with forecasts generated by the VAR model. The results indicate that the present model outperforms the VAR model in terms of forecasting GDP growth, inflation rate and unemployment rate. We also evaluate the responses of main macroeconomic variables to VAT rate and world trade shocks via stochastic simulation. Finally, we generate eхante forecasts for the Russian economy under the baseline assumptions.... view less

Keywords
Russia; economic development (on national level)

Classification
National Economy

Free Keywords
macroeconometric model; Cowles Commission approach; structural macroeconomic model; macroeconomic model for Russia; forecasting

Document language
English

Publication Year
2020

Page/Pages
p. 114-143

Journal
Russian Journal of Economics, 6 (2020) 2

ISSN
2618-7213

Status
Published Version; reviewed

Licence
Creative Commons - Attribution-Noncommercial-No Derivative Works 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.