SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.464 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-95446-2

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Estimating Income Distributions From Grouped Data: A Minimum Quantile Distance Approach

[Zeitschriftenartikel]

Spasova, Tsvetana

Abstract

This paper focuses on the estimation of income distribution from grouped data in the form of quantiles. We propose a novel application of the minimum quantile distance (MQD) approach and compare its performance with the maximum likelihood (ML) technique. The estimation methods are applied using thre... mehr

This paper focuses on the estimation of income distribution from grouped data in the form of quantiles. We propose a novel application of the minimum quantile distance (MQD) approach and compare its performance with the maximum likelihood (ML) technique. The estimation methods are applied using three parametric distributions: the generalized beta distribution of the second kind (GB2), the Dagum distribution, and the Singh–Maddala distribution. We provide the density-quantile functions for these distributions, along with reproducible R code. A simulation study is conducted to evaluate the performance of the MQD and ML methods. The proposed methods are then applied to data from 30 European countries, utilizing the aforementioned parametric distributions. To validate the accuracy of the estimates, we compare them with estimates obtained from more detailed and informative microdata sets. The findings confirm the excellent performance of the considered parametric distributions in estimating income distribution. Additionally, the MQD approach is identified as a straightforward and reliable method for this purpose. Notably, the MQD method displays superior robustness in comparison to the ML technique when it comes to selecting suitable starting values for the underlying computation algorithm, specifically when dealing with the GB2 distribution.... weniger

Thesaurusschlagwörter
Einkommen; Einkommensverteilung; Europa; quantitative Methode; Verteilung; Schätzung; Algorithmus; Parameter; Ungleichheit; soziale Ungleichheit; Armut; Wohlfahrt; Daten; Datenaufbereitung

Klassifikation
Allgemeines, spezielle Theorien und "Schulen", Methoden, Entwicklung und Geschichte der Wirtschaftswissenschaften
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
minimum quantile distance; maximum likelihood technique; grouped data; GB2 distribution; EU-SILC 2011

Sprache Dokument
Englisch

Publikationsjahr
2023

Seitenangabe
S. 1-18

Zeitschriftentitel
Computational Economics (2023) Early View

DOI
https://doi.org/10.1007/s10614-023-10505-0

ISSN
1572-9974

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.