Show simple item record

[journal article]

dc.contributor.authorMeteier, Quentinde
dc.contributor.authorCapallera, Marinede
dc.contributor.authorSalis, Emmanuelde
dc.date.accessioned2024-07-05T09:17:13Z
dc.date.available2024-07-05T09:17:13Z
dc.date.issued2023de
dc.identifier.issn2352-3409de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/94934
dc.description.abstractThis dataset contains data of 346 drivers collected during six experiments conducted in a fixed-base driving simulator. Five studies simulated conditionally automated driving (L3-SAE), and the other one simulated manual driving (L0-SAE). The dataset includes physiological data (electrocardiogram (ECG), electrodermal activity (EDA), and respiration (RESP)), driving and behavioral data (reaction time, steering wheel angle, …), performance data of non-driving-related tasks, and questionnaire responses. Among them, measures from standardized questionnaires were collected, either to control the experimental manipulation of the driver's state, or to measure constructs related to human factors and driving safety (drowsiness, mental workload, affective state, situation awareness, situational trust, user experience). In the provided dataset, some raw data have been processed, notably physiological data from which physiological indicators (or features) have been calculated. The latter can be used as input for machine learning models to predict various states (sleep deprivation, high mental workload, ...) that may be critical for driver safety. Subjective self-reported measures can also be used as ground truth to apply regression techniques. Besides that, statistical analyses can be performed using the dataset, in particular to analyze the situational awareness or the takeover quality of drivers, in different states and different driving scenarios. Overall, this dataset contributes to better understanding and consideration of the driver's state and behavior in conditionally automated driving. In addition, this dataset stimulates and inspires research in the fields of physiological/affective computing and human factors in transportation, and allows companies from the automotive industry to better design adapted human-vehicle interfaces for safe use of automated vehicles on the roads.de
dc.languageende
dc.subject.ddcSoziologie, Anthropologiede
dc.subject.ddcSociology & anthropologyen
dc.subject.ddcPsychologiede
dc.subject.ddcPsychologyen
dc.subject.otherconditionally automated driving; driver state; Physiology Electrocardiogram (ECG); Electrodermal activity (EDA); Respiration Situation awareness (SA); takeover quality; Positive and Negative Affect Schedule (PANAS) (ZIS 146); Deutsche Version der Positive and Negative Affect Schedule PANAS (GESIS Panel) (ZIS 242)de
dc.titleA dataset on the physiological state and behavior of drivers in conditionally automated drivingde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalData in Brief
dc.source.volume47de
dc.publisher.countryNLDde
dc.subject.classozVerkehrssoziologiede
dc.subject.classozSociology of Trafficen
dc.subject.classozangewandte Psychologiede
dc.subject.classozApplied Psychologyen
dc.subject.thesozVerkehrde
dc.subject.thesoztrafficen
dc.subject.thesozPersonenverkehrde
dc.subject.thesozpassenger trafficen
dc.subject.thesozKraftfahrzeugde
dc.subject.thesozmotor vehicleen
dc.subject.thesozSicherheitde
dc.subject.thesozsecurityen
dc.subject.thesozVerkehrssicherheitde
dc.subject.thesoztraffic safetyen
dc.subject.thesozFragebogende
dc.subject.thesozquestionnaireen
dc.subject.thesozquantitative Methodede
dc.subject.thesozquantitative methoden
dc.subject.thesozMensch-Maschine-Systemde
dc.subject.thesozman-machine systemen
dc.identifier.urnurn:nbn:de:0168-ssoar-94934-5
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
ssoar.contributor.institutionFDBde
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10037192
internal.identifier.thesoz10054416
internal.identifier.thesoz10037499
internal.identifier.thesoz10036566
internal.identifier.thesoz10057860
internal.identifier.thesoz10037914
internal.identifier.thesoz10052183
internal.identifier.thesoz10042496
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
dc.source.pageinfo1-23de
internal.identifier.classoz10206
internal.identifier.classoz10709
internal.identifier.journal1277
internal.identifier.document32
internal.identifier.ddc301
internal.identifier.ddc150
dc.identifier.doihttps://doi.org/10.1016/j.dib.2023.109027de
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
internal.pdf.validfalse
internal.pdf.wellformedtrue
internal.pdf.encryptedfalse


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record