SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.32609/j.ruje.9.112910

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Rural development in Stavropol Krai: Assessment based on statistics and local perception

[Zeitschriftenartikel]

Bobryshev, Alexey
Baydakov, Andrey
Zvyagintseva, Olga
Lugovskoy, Sergey

Abstract

The article classifies rural territorial entities using the systems approach, which is based on identifying their key subsystems - natural, social, and economic. The study aims to develop and implement a procedure for creating a multi-aspect assessment range of rural development levels relying on th... mehr

The article classifies rural territorial entities using the systems approach, which is based on identifying their key subsystems - natural, social, and economic. The study aims to develop and implement a procedure for creating a multi-aspect assessment range of rural development levels relying on the combined use of multivariate statistical analysis and the computational and expert comparison of objective and subjective structured information. The grouping of rural territorial entities carried out on this basis is intended to identify a pattern representing their targeted development, taking into account both the existing social and economic situation in the territory and its perception by the population. Methodological approaches to classify territorial rural units according to their level of rural development usually lack a systemic perspective and a subjective dimension to include the rural inhabitant perspectives. Using only expert opinions does not allow it to be reflected adequately enough. The comparison between the objective and subjective assessments of the natural, social, and economic conditions of rural territorial entities serves as the basis for identifying three groups of development patterns. Results were obtained through the combined application methods - cluster analysis and multidimensional scaling. The first one was used for an objective ranking of municipal districts in the region using official statistical data, while the second method was used for structuring the rural survey results. The main study result is the procedure for the multi-aspect grouping of rural areas, which enables the objective and subjective assessment of their key subsystems - economic, social, and natural - to be integrated into a single assessment tool. Its application helps establish a range of general patterns representing rural development. The study results can be used in the creation and updating of object- and subject-differentiated programs for the development of rural territorial entities.... weniger

Thesaurusschlagwörter
Russland; ländlicher Raum; ländliche Entwicklung; Landbevölkerung; öffentliche Meinung; sozioökonomische Lage

Klassifikation
Raumplanung und Regionalforschung

Sprache Dokument
Englisch

Publikationsjahr
2023

Seitenangabe
S. 386-406

Zeitschriftentitel
Russian Journal of Economics, 9 (2023) 4

ISSN
2405-4739

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Nicht kommerz., Keine Bearbeitung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.