SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(11.31Mb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-91944-5

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Iterative Kernel Density Estimation Applied to Grouped Data: Estimating Poverty and Inequality Indicators from the German Microcensus

[journal article]

Walter, Paul
Groß, Marcus
Schmid, Timo
Weimer, Katja

Abstract

The estimation of poverty and inequality indicators based on survey data is trivial as long as the variable of interest (e.g., income or consumption) is measured on a metric scale. However, estimation is not directly possible, using standard formulas, when the income variable is grouped due to confi... view more

The estimation of poverty and inequality indicators based on survey data is trivial as long as the variable of interest (e.g., income or consumption) is measured on a metric scale. However, estimation is not directly possible, using standard formulas, when the income variable is grouped due to confidentiality constraints or in order to decrease item nonresponse. We propose an iterative kernel density algorithm that generates metric pseudo samples from the grouped variable for the estimation of indicators. The corresponding standard errors are estimated by a non-parametric bootstrap that accounts for the additional uncertainty due to the grouping. The algorithm enables the use of survey weights and household equivalence scales. The proposed method is applied to the German Microcensus for estimating the regional distribution of poverty and inequality in Germany.... view less

Keywords
microcensus; Federal Republic of Germany; poverty; inequality; estimation; data; indicator

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
direct estimation; interval-censored data; non-parametric estimation; OECD scale; prediction; Mikrozensus 2012

Document language
English

Publication Year
2022

Page/Pages
p. 599-635

Journal
Journal of Official Statistics, 38 (2022) 2

DOI
https://doi.org/10.2478/jos-2022-0027

ISSN
2001-7367

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-Noncommercial-No Derivative Works 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.