SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.17645/up.7165

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Digital Participatory Model as Part of a Data-Driven Decision Support System for Urban Vibrancy

[journal article]

Kırdar, Gülce
Çağdaş, Gülen

Abstract

Digital participation relies on computational systems as the instruments for expert engagement, data-driven insight, and informed decision-making. This study aims to increase expert engagement with the Bayesian-based decision support model in evaluating urban vibrancy decisions. In this study, urban... view more

Digital participation relies on computational systems as the instruments for expert engagement, data-driven insight, and informed decision-making. This study aims to increase expert engagement with the Bayesian-based decision support model in evaluating urban vibrancy decisions. In this study, urban vibrancy parameters are defined using "economic, use, and image value" measures. This article focuses on the visual aspect of vibrancy, defined as the image value of place. The image value is evaluated through likability and likability features. The case study area is the Eminönü Central Business District in the Istanbul Historic Peninsula due to its distinctive urban dynamics derived from the duality of being a cultural and cosmopolitan city center. This research presents a method as a decision support system (DSS) model based on the Bayesian belief network (BBN) and spatial BBN for supporting urban vibrancy decisions. The spatial BBNs monitor spatial outcomes of variables' dependencies that form through the BBN relationship network. Spatial BBN tools monitors the spatial impact of decisions for informed urban interventions. The results demonstrate that urban greening, pedestrianization, and human-scaled streetscapes should be prioritized to make streets more likable. The most significant intervention areas are Tahtakale for signboard regulation, Sultanahmet and Vefa for cultural landscape improvement, and Vefa and Mahmutpaşa for planning building enclosures. The participation is achieved by evaluating urban vibrancy with what-if scenarios using BBN. The developed DSS model addresses which parameters should be prioritized, and what are their spatial consequences. The use of spatial BBN tools presents certain limitations in terms of interoperability and user interaction. Overall, this research contributes to participatory urban planning by incorporating both conditional and spatial dependencies. This unique approach not only promotes a more holistic understanding of urban vibrancy but also contributes to the advancement of digital participation in urban planning decisions.... view less

Keywords
urban planning; decision making; decision aid; Turkey; new technology

Classification
Area Development Planning, Regional Research

Free Keywords
decision support; digital participation; expert participation; place value; spatial Bayesian belief network; spatial dynamics; urban vibrancy

Document language
English

Publication Year
2024

Journal
Urban Planning, 9 (2024)

Issue topic
Citizen Participation, Digital Agency, and Urban Development

ISSN
2183-7635

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.