SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.15195/v10.a19

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Why Net Worth Misrepresents Wealth Effects and What to Do About It

[journal article]

Dräger, Jascha
Pforr, Klaus
Müller, Nora

Abstract

Wealth plays an important role in social stratification but the results that can be obtained when analyzing wealth as a predictor variable depend on modeling decisions. Although wealth consists of multiple components it is often operationalized as net worth. Moreover, wealth effects are likely non-l... view more

Wealth plays an important role in social stratification but the results that can be obtained when analyzing wealth as a predictor variable depend on modeling decisions. Although wealth consists of multiple components it is often operationalized as net worth. Moreover, wealth effects are likely non-linear, but the functional form is often unknown. To overcome these problems, we propose to 1) split up net worth into gross wealth and debt and evaluate their joint effect and 2) use non-parametric Generalized Additive Models. We show in a simulation study that this approach describes systematic wealth differences in more detail and overfits less to random variation in the data than standard approaches. We then apply the approach to re-analyze wealth gaps in educational attainment in the US. We find that the operationalization of wealth as net worth results in a misclassification of which children have the best and the worst educational prospects. Not negative net worth is associated with the worst educational prospects but only the combination of low gross wealth and low debt. The most advantaged group are not only children with high net worth but all children with high gross wealth independent of the households' amount of debt.... view less


Vermögen spielt eine wichtige Rolle bei der sozialen Ungleichheit, aber die Ergebnisse, die bei der Analyse von Vermögen als Einflussfaktor erzielt werden können, hängen davon ab, wie man den Zusammenhang modelliert. Obwohl Vermögen aus mehreren Komponenten besteht, wird es häufig einfach als Nettob... view more

Vermögen spielt eine wichtige Rolle bei der sozialen Ungleichheit, aber die Ergebnisse, die bei der Analyse von Vermögen als Einflussfaktor erzielt werden können, hängen davon ab, wie man den Zusammenhang modelliert. Obwohl Vermögen aus mehreren Komponenten besteht, wird es häufig einfach als Nettobetrag operationalisiert. Außerdem sind Vermögenseffekte vermutlich nichtlinear, aber der wahre funktionale Zusammenhang ist oft unbekannt. Die Autor*innen stellen fest, dass die Betrachtung des Nettovermögens zu einer falschen Vorhersage führt, welche Kinder sehr gute und sehr schlechte Bildungsaussichten haben. Nicht negatives Nettovermögen führt zu den schlechtesten Bildungsaussichten sondern nur die Kombination aus geringem Bruttovermögen und geringer Verschuldung. Dagegen sind die am meisten begünstigte Gruppe nicht Kinder mit hohem Nettovermögen, sondern alle Kinder mit hohem Bruttovermögen, unabhängig von der Höhe der Haushaltsverschuldung.... view less

Keywords
assets; indebtedness; impact; social inequality; social status; generation

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
net worth; wealth; generalized additive models; simulation study; Panel Survey of Income Dynamics, 2021

Document language
English

Publication Year
2023

Page/Pages
p. 534-558

Journal
Sociological Science, 10 (2023)

ISSN
2330-6696

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.