SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(1.673Mb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-88567-0

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Topic-independent modeling of user knowledge in informational search sessions

[journal article]

Yu, Ran
Tang, Rui
Rokicki, Markus
Gadiraju, Ujwal
Dietze, Stefan

Abstract

Web search is among the most frequent online activities. In this context, widespread informational queries entail user intentions to obtain knowledge with respect to a particular topic or domain. To serve learning needs better, recent research in the field of interactive information retrieval has ad... view more

Web search is among the most frequent online activities. In this context, widespread informational queries entail user intentions to obtain knowledge with respect to a particular topic or domain. To serve learning needs better, recent research in the field of interactive information retrieval has advocated the importance of moving beyond relevance ranking of search results and considering a user's knowledge state within learning oriented search sessions. Prior work has investigated the use of supervised models to predict a user's knowledge gain and knowledge state from user interactions during a search session. However, the characteristics of the resources that a user interacts with have neither been sufficiently explored, nor exploited in this task. In this work, we introduce a novel set of resource-centric features and demonstrate their capacity to significantly improve supervised models for the task of predicting knowledge gain and knowledge state of users in Web search sessions. We make important contributions, given that reliable training data for such tasks is sparse and costly to obtain. We introduce various feature selection strategies geared towards selecting a limited subset of effective and generalizable features.... view less

Keywords
Internet; online media; information capture; information retrieval; computer; human being; knowledge

Classification
Information Science

Free Keywords
Human-computer interaction; Knowledge gain; Online learning; SAL; Search as learning

Document language
English

Publication Year
2021

Page/Pages
p. 240-268

Journal
Information Retrieval Journal, 24 (2021) 3

DOI
https://doi.org/10.1007/s10791-021-09391-7

ISSN
1573-7659

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.