Show simple item record

[journal article]

dc.contributor.authorNeuhäuser, Leoniede
dc.contributor.authorStamm, Felix I.de
dc.contributor.authorLemmerich, Floriande
dc.contributor.authorSchaub, Michael T.de
dc.contributor.authorStrohmaier, Markusde
dc.date.accessioned2023-08-16T10:02:29Z
dc.date.available2023-08-16T10:02:29Z
dc.date.issued2021de
dc.identifier.issn2364-8228de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/88561
dc.description.abstractNetwork analysis provides powerful tools to learn about a variety of social systems. However, most analyses implicitly assume that the considered relational data is error-free, and reliable and accurately reflects the system to be analysed. Especially if the network consists of multiple groups (e.g., genders, races), this assumption conflicts with a range of systematic biases, measurement errors and other inaccuracies that are well documented in the literature. To investigate the effects of such errors we introduce a framework for simulating systematic bias in attributed networks. Our framework enables us to model erroneous edge observations that are driven by external node attributes or errors arising from the (hidden) network structure itself. We exemplify how systematic inaccuracies distort conclusions drawn from network analyses on the task of minority representations in degree-based rankings. By analysing synthetic and real networks with varying homophily levels and group sizes, we find that the effect of introducing systematic edge errors depends on both the type of edge error and the level of homophily in the system: in heterophilic networks, minority representations in rankings are very sensitive to the type of systematic edge error. In contrast, in homophilic networks we find that minorities are at a disadvantage regardless of the type of error present. We thus conclude that the implications of systematic bias in edge data depend on an interplay between network topology and type of systematic error. This emphasises the need for an error model framework as developed here, which provides a first step towards studying the effects of systematic edge-uncertainty for various network analysis tasks.de
dc.languageende
dc.subject.ddcSozialwissenschaften, Soziologiede
dc.subject.ddcSocial sciences, sociology, anthropologyen
dc.subject.otherAttributed networks; Bias; Edge uncertainty; Researchde
dc.titleSimulating systematic bias in attributed social networks and its effect on rankings of minority nodesde
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.identifier.urllocalfile:/var/tmp/crawlerFiles/deepGreen/35a08492352149aaa94a1b764f173e02/35a08492352149aaa94a1b764f173e02.pdfde
dc.source.journalApplied Network Science
dc.source.volume6de
dc.publisher.countryCHEde
dc.subject.classozErhebungstechniken und Analysetechniken der Sozialwissenschaftende
dc.subject.classozMethods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methodsen
dc.subject.thesozsoziales Netzwerkde
dc.subject.thesozsocial networken
dc.subject.thesozNetzwerkanalysede
dc.subject.thesoznetwork analysisen
dc.subject.thesozDatengewinnungde
dc.subject.thesozdata captureen
dc.subject.thesozRankingde
dc.subject.thesozrankingen
dc.identifier.urnurn:nbn:de:0168-ssoar-88561-0
dc.rights.licenceCreative Commons - Namensnennung 4.0de
dc.rights.licenceCreative Commons - Attribution 4.0en
ssoar.contributor.institutionGESISde
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10053143
internal.identifier.thesoz10053147
internal.identifier.thesoz10040547
internal.identifier.thesoz10042956
dc.type.stockarticlede
dc.type.documentZeitschriftenartikelde
dc.type.documentjournal articleen
internal.identifier.classoz10105
internal.identifier.journal2724
internal.identifier.document32
internal.identifier.ddc300
dc.identifier.doihttps://doi.org/10.1007/s41109-021-00425-zde
dc.description.pubstatusVeröffentlichungsversionde
dc.description.pubstatusPublished Versionen
internal.identifier.licence16
internal.identifier.pubstatus1
internal.identifier.review1
ssoar.wgl.collectiontruede
internal.dda.referencecrawler-deepgreen-217@@35a08492352149aaa94a1b764f173e02


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record