SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.17645/pag.v10i4.5756

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Fueling Toxicity? Studying Deceitful Opinion Leaders and Behavioral Changes of Their Followers

[Zeitschriftenartikel]

Guldemond, Puck
Casas Salleras, Andreu
van der Velden, Mariken

Abstract

The spread of deceiving content on social media platforms is a growing concern amongst scholars, policymakers, and the public at large. We examine the extent to which influential users (i.e., “deceitful opinion leaders”) on Twitter engage in the spread of different types of deceiving content, thereb... mehr

The spread of deceiving content on social media platforms is a growing concern amongst scholars, policymakers, and the public at large. We examine the extent to which influential users (i.e., “deceitful opinion leaders”) on Twitter engage in the spread of different types of deceiving content, thereby overcoming the compartmentalized state of the field. We introduce a theoretical concept and approach that puts these deceitful opinion leaders at the center, instead of the content they spread. Moreover, our study contributes to the understanding of the effects that these deceiving messages have on other Twitter users. For 5,574 users and 731,371 unique messages, we apply computational methods to study changes in messaging behavior after they started following a set of eight Dutch deceitful opinion leaders on Twitter during the Dutch 2021 election campaign. The results show that users apply more uncivil language, become more affectively polarized, and talk more about politics after following a deceitful opinion leader. Our results thereby underline that this small group of deceitful opinion leaders change the norms of conversation on these platforms. Hence, this accentuates the need for future research to study the literary concept of deceitful opinion leaders.... weniger

Thesaurusschlagwörter
Twitter; Soziale Medien; Niederlande; Desinformation; Meinungsführer; Kommunikationswissenschaft

Klassifikation
interaktive, elektronische Medien
Medieninhalte, Aussagenforschung

Freie Schlagwörter
computational communication science

Sprache Dokument
Englisch

Publikationsjahr
2022

Seitenangabe
S. 336-348

Zeitschriftentitel
Politics and Governance, 10 (2022) 4

Heftthema
Negative Politics: Leader Personality, Negative Campaigning, and the Oppositional Dynamics of Contemporary Politics

ISSN
2183-2463

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.