SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.12758/mda.2023.04

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Comparing and Improving the Accuracy of Nonprobability Samples: Profiling Australian Surveys

[journal article]

Kocar, Sebastian
Baffour, Bernard

Abstract

There has been a great deal of debate in the survey research community about the accuracy of nonprobability sample surveys. This work aims to provide empirical evidence about the accuracy of nonprobability samples and to investigate the performance of a range of post-survey adjustment approaches (ca... view more

There has been a great deal of debate in the survey research community about the accuracy of nonprobability sample surveys. This work aims to provide empirical evidence about the accuracy of nonprobability samples and to investigate the performance of a range of post-survey adjustment approaches (calibration or matching methods) to reduce bias, and lead to enhanced inference. We use data from five nonprobability online panel surveys and com­pare their accuracy (pre- and post-survey adjustment) to four probability surveys, including data from a probability online panel. This article adds value to the existing research by assessing methods for causal inference not previously applied for this purpose and dem­onstrates the value of various types of covariates in mitigation of bias in nonprobability online panels. Investigating different post-survey adjustment scenarios based on the avail­ability of auxiliary data, we demonstrated how carefully designed post-survey adjustment can reduce some bias in survey research using nonprobability samples. The results show that the quality of post-survey adjustments is, first and foremost, dependent on the avail­ability of relevant high-quality covariates which come from a representative large-scale probability-based survey data and match those in nonprobability data. Second, we found little difference in the efficiency of different post-survey adjustment methods, and inconsis­tent evidence on the suitability of 'webographics' and other internet-associated covariates for mitigating bias in nonprobability samples.... view less

Keywords
survey research; sample; online survey; data capture; sampling error

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
nonprobability sampling; volunteer online panels; post-survey adjustment; calibration; matching methods; benchmarking

Document language
English

Publication Year
2023

Page/Pages
p. 171-206

Journal
Methods, data, analyses : a journal for quantitative methods and survey methodology (mda), 17 (2023) 2

ISSN
2190-4936

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.