SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.18335/region.v10i1.449

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Prediction models and testing of resilience in regions: Covid19 economic impact in USA counties study case

[journal article]

Manousiadis, Charalampos
Gaki, Eleni

Abstract

A significant amount of research has been conducted regarding the resilience of the regions and the factors that contribute to allow them to face challenges, crises, or disasters. The rise of promising sectors like Machine learning (ML) and Artificial Intelligence (AI) can enhance this research usin... view more

A significant amount of research has been conducted regarding the resilience of the regions and the factors that contribute to allow them to face challenges, crises, or disasters. The rise of promising sectors like Machine learning (ML) and Artificial Intelligence (AI) can enhance this research using computing power in regional economic, social, and environmental data analysis to find patterns and create prediction models. Through Machine Learning, the following research introduces the use of models that can predict the performance of a region in disasters. A case study of the performance of USA Counties during the Covid19 first wave period of the pandemic and the related restrictions that were applied by the authorities was used in order to reveal the obvious or hidden parameters and factors that affected their resilience, in particular their economic response, and other interesting patterns between all the involved attributes. This paper aims to contribute to a methodology and to offer useful guidelines in how regional factors can be translated and processed by data and ML/AI tools and techniques. The proposed models were evaluated on their ability to predict the economic performance of each county and in particular the difference of its unemployment rate between March and June of 2020. The former is based on several economic, social, and environmental data -up to that point in time- using classifiers like neural networks and decision trees. A comparison of the different models' execution was performed, and the best models were further analyzed and presented. Further execution results that identified patterns and connections between regional data and attributes are also presented. The main results of this research are i) a methodological framework of how regional status can be translated into digital models and ii) related examples of predictive models in a real case. An effort was also made to decode the results in terms of regional science to produce useful and meaningful conclusions, thus a decision tree is also presented to demonstrate how these models can be interpreted. Finally, the connection between this work and the strong current trend of regional and urban digitalization towards sustainability is established.... view less

Keywords
United States of America; epidemic; economic impact; unemployment; regional factors; resilience; prognosis; data; analysis; artificial intelligence; model; digitalization; sustainability

Classification
Area Development Planning, Regional Research

Free Keywords
Covid-19; Machine Learning; Prediction Models; Counties; Restrictions

Document language
English

Publication Year
2023

Page/Pages
p. 113-132

Journal
Region: the journal of ERSA, 10 (2023) 1

ISSN
2409-5370

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.