SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.14512/tatup.32.1.24

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Algorithmische Fairness in der polizeilichen Ermittlungsarbeit: Ethische Analyse von Verfahren des maschinellen Lernens zur Gesichtserkennung

Algorithmic fairness in police investigative work: Ethical analysis of machine learning methods for facial recognition
[Zeitschriftenartikel]

Brandner, Lou Therese
Hirsbrunner, Simon David

Abstract

This article discusses fairness in artificial intelligence (AI) based policing procedures using facial recognition as an example. Algorithmic decisions based on discriminatory dynamics can (re)produce and automate injustice. AI fairness here concerns not only the creation and sharing of datasets or ... mehr

This article discusses fairness in artificial intelligence (AI) based policing procedures using facial recognition as an example. Algorithmic decisions based on discriminatory dynamics can (re)produce and automate injustice. AI fairness here concerns not only the creation and sharing of datasets or the training of models but also how systems are deployed in the real world. Quantifying fairness can distract  rom how discrimination and oppression translate concretely into social phenomena. Integrative approaches can help actively incorporate ethical, legal, social, and economic factors into technology development to more holistically assess the consequences of deployment through continuous interdisciplinary collaboration.... weniger


Dieser Beitrag diskutiert Fairness in auf künstlicher Intelligenz (KI) basierenden Verfahren der Polizeiarbeit anhand des Beispiels der Gesichtserkennung. Algorithmische Entscheidungen, die auf gesellschaftlichen Diskriminierungsdynamiken beruhen, können Ungerechtigkeiten (re-)produzieren und automa... mehr

Dieser Beitrag diskutiert Fairness in auf künstlicher Intelligenz (KI) basierenden Verfahren der Polizeiarbeit anhand des Beispiels der Gesichtserkennung. Algorithmische Entscheidungen, die auf gesellschaftlichen Diskriminierungsdynamiken beruhen, können Ungerechtigkeiten (re-)produzieren und automatisieren. KI-Fairness betrifft dabei nicht nur die Erstellung und das Teilen von Datensätzen oder das Training von Modellen, sondern auch die Art des Systemeinsatzes in der Realwelt. Die Quantifizierung von Fairness kann davon ablenken, wie Diskriminierung und Unterdrückung sich konkret als soziale Phänomene niederschlagen. Integrative Ansätze können hier dazu beitragen, durch kontinuierliche interdisziplinäre Kollaboration ethische, rechtliche, soziale und wirtschaftliche Faktoren aktiv in die Technikentwicklung einzubeziehen und die Folgen des Einsatzes ganzheitlicher einzuschätzen.... weniger

Thesaurusschlagwörter
Polizei; künstliche Intelligenz; Algorithmus; Fairness

Klassifikation
Technikfolgenabschätzung

Freie Schlagwörter
algorithmic bias; fairness; machine learning; policing

Sprache Dokument
Deutsch

Publikationsjahr
2023

Seitenangabe
S. 24-29

Zeitschriftentitel
TATuP - Zeitschrift für Technikfolgenabschätzung in Theorie und Praxis / Journal for Technology Assessment in Theory and Practice, 32 (2023) 1

Heftthema
Modeling for policy: Challenges for technology assessment from new prognostic methods / Modellierung für die Politik: Herausforderungen für die Technikfolgenabschätzung durch neue prognostische Methoden

ISSN
2567-8833

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 

Diese Webseite verwendet Cookies. Die Datenschutzerklärung bietet Ihnen weitere Informationen, auch über Ihr Widerspruchsrecht.