SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(290.9Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-85276-1

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Collecting Survey and Smartphone Sensor Data With an App: Opportunities and Challenges Around Privacy and Informed Consent

[journal article]

Kreuter, Frauke
Haas, Georg-Christoph
Keusch, Florian
Bähr, Sebastian
Trappmann, Mark

Abstract

The new European General Data Protection Regulation (GDPR) imposes enhanced requirements on digital data collection. This article reports from a 2018 German nationwide population-based probability app study in which participants were asked through a GDPR compliant consent process to share a series o... view more

The new European General Data Protection Regulation (GDPR) imposes enhanced requirements on digital data collection. This article reports from a 2018 German nationwide population-based probability app study in which participants were asked through a GDPR compliant consent process to share a series of digital trace data, including geolocation, accelerometer data, phone and text messaging logs, app usage, and access to their address books. With about 4,300 invitees and about 650 participants, we demonstrate (1) people were just as willing to share such extensive digital trace data as they were in studies with far more limited requests; (2) despite being provided more decision-related information, participants hardly differentiated between the different data requests made; and (3) once participants gave consent, they did not tend to revoke it. We also show (4) evidence for a widely-held belief that explanations regarding data collection and data usage are often not read carefully, at least not within the app itself, indicating the need for research and user experience improvement to adequately inform and protect participants. We close with suggestions to the field for creating a seal of approval from professional organizations to help the research community promote the safe use of data.... view less

Keywords
data capture; data acquisition; digital media; data protection

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
GDPR; app data collection; informed consent; passive measurements; privacy; smartphones

Document language
English

Publication Year
2020

Page/Pages
p. 533-549

Journal
Social Science Computer Review, 38 (2020) 5

DOI
https://doi.org/10.1177/0894439318816389

ISSN
1552-8286

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-NonCommercial 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.