SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(584.2Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-84961-9

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Tree-structured scale effects in binary and ordinal regression

[journal article]

Tutz, Gerhard
Berger, Moritz

Abstract

In binary and ordinal regression one can distinguish between a location component and a scaling component. While the former determines the location within the range of the response categories, the scaling indicates variance heterogeneity. In particular since it has been demonstrated that misleading ... view more

In binary and ordinal regression one can distinguish between a location component and a scaling component. While the former determines the location within the range of the response categories, the scaling indicates variance heterogeneity. In particular since it has been demonstrated that misleading effects can occur if one ignores the presence of a scaling component, it is important to account for potential scaling effects in the regression model, which is not possible in available recursive partitioning methods. The proposed recursive partitioning method yields two trees: one for the location and one for the scaling. They show in a simple interpretable way how variables interact to determine the binary or ordinal response. The developed algorithm controls for the global significance level and automatically selects the variables that have an impact on the response. The modeling approach is illustrated by several real-world applications.... view less

Keywords
scale construction; model; regression; ALLBUS

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
recursive partitioning; tree-structured modeling; location-scale model; heterogeneity of variances; ordinal responses; Allgemeine Bevölkerungsumfrage der Sozialwissenschaften ALLBUS 2012 (ZA4614); German General Social Survey - ALLBUS 2012 (ZA4616)

Document language
English

Publication Year
2021

Page/Pages
p. 1-12

Journal
Statistics and Computing, 31 (2021) 2

DOI
https://doi.org/10.1007/s11222-020-09992-0

ISSN
1573-1375

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.