SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(487.6 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-84507-2

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Lumen: A software for the interactive visualization of probabilistic models together with data

[Zeitschriftenartikel]

Lucas, Philipp
Giesen, Joachim

Abstract

Research in machine learning and applied statistics has led to the development of a plethora of different types of models. Lumen aims to make a particular yet broad class of models, namely, probabilistic models, more easily accessible to humans. Lumen does so by providing an interactive web applicat... mehr

Research in machine learning and applied statistics has led to the development of a plethora of different types of models. Lumen aims to make a particular yet broad class of models, namely, probabilistic models, more easily accessible to humans. Lumen does so by providing an interactive web application for the visual exploration, comparison, and validation of probabilistic models together with underlying data. As the main feature of Lumen a user can rapidly and incrementally build flexible and potentially complex interactive visualizations of both the probabilistic model and the data that the model was trained on. Many classic machine learning methods learn models that predict the value of some target variable(s) given the value of some input variable(s). Probabilistic models go beyond this point estimation by predicting instead of a particular value a probability distribution over the target variable(s). This allows, for instance, to estimate the prediction’s uncertainty, a highly relevant quantity. For a demonstrative example consider a model predicts that an image of a suspicious skin area does not show a malignant tumor. Here it would be extremely valuable to additionally know whether the model is sure to 99.99% or just 51%, that is, to know the uncertainty in the model’s prediction. Lumen is build on top of the modelbase back-end, which provides a SQL-like interface for querying models and its data (Lucas, 2020).... weniger

Thesaurusschlagwörter
ALLBUS; Software; Modell; Daten; Visualisierung; Wahrscheinlichkeit; computerunterstütztes Lernen; interaktive Medien; Online-Dienst

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
Allgemeine Bevölkerungsumfrage der Sozialwissenschaften ALLBUS 2016 (ZA5250 v2.1.0)

Sprache Dokument
Englisch

Publikationsjahr
2021

Seitenangabe
S. 1-4

Zeitschriftentitel
The journal of open source software : a developer friendly journal for research software packages, 63 (2021) 6

DOI
https://doi.org/10.21105/joss.03395

ISSN
2475-9066

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.