SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(189.7Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-83702-2

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Religious Politicians and Creative Photographers: Automatic User Categorization in Twitter

[conference paper]

Wagner, Claudia
Asur, Sitaram
Hailpern, Joshua

Corporate Editor
IEEE Computer Society

Abstract

Finding the ''right people'' is a central aspect of social media systems. Twitter has millions of users who have varied interests, professions and personalities. For those in fields such as advertising and marketing, it is important to identify certain characteristics of users to target. However, Tw... view more

Finding the ''right people'' is a central aspect of social media systems. Twitter has millions of users who have varied interests, professions and personalities. For those in fields such as advertising and marketing, it is important to identify certain characteristics of users to target. However, Twitter users do not generally provide sufficient information about themselves on their profile which makes this task difficult. In response, this work sets out to automatically infer professions (e.g., musicians, health sector workers, technicians) and personality related attributes (e.g., creative, innovative, funny) for Twitter users based on features extracted from their content, their interaction networks, attributes of their friends and their activity patterns. We develop a comprehensive set of latent features that are then employed to perform efficient classification of users along these two dimensions (profession and personality). Our experiments on a large sample of Twitter users demonstrate both a high overall accuracy in detecting profession and personality related attributes as well as highlighting the benefits and pitfalls of various types of features for particular categories of users.... view less

Keywords
user; classification; social media; occupation; twitter; personality

Classification
Interactive, electronic Media

Free Keywords
user profiling

Collection Title
SocialCom '13: Proceedings of the 2013 International Conference on Social Computing

Conference
SocialCom 2013 - SocialCom/PASSAT/BigData/EconCom/BioMedCom 2013. Washington, D.C., 2013

Document language
English

Publication Year
2013

City
Piscataway, NJ

Page/Pages
p. 303-310

DOI
https://doi.org/10.1109/SocialCom.2013.49

ISBN
978-0-7695-5137-1

Status
Postprint; peer reviewed

Licence
Deposit Licence - No Redistribution, No Modifications


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.