SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.18335/region.v9i2.450

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

An introduction to pspatreg: A new R package for semiparametric spatial autoregressive analysis

[Zeitschriftenartikel]

Mínguez, Román
Basile, Roberto
Durbán, María

Abstract

This article introduces a new R package (pspatreg) for the estimation of semiparametric spatial autoregressive models. pspatreg fits penalized spline semiparametric spatial autoregressive models via Restricted Maximum Likelihood or Maximum Likelihood. These models are very flexible since they make i... mehr

This article introduces a new R package (pspatreg) for the estimation of semiparametric spatial autoregressive models. pspatreg fits penalized spline semiparametric spatial autoregressive models via Restricted Maximum Likelihood or Maximum Likelihood. These models are very flexible since they make it possible to simultaneously control for spatial dependence, nonlinearities in the functional form, and spatio-temporal heterogeneity. The package also allows to estimate parametric spatial autoregressive models for both cross sectional and panel data (with fixed effects), thus avoiding the use of different libraries. The official demos, vignettes, and tutorials of the package are distributed either in CRAN or GitHub. This article illustrates the potential of the  package by using an application to cross-sectional data.... weniger

Klassifikation
Raumplanung und Regionalforschung

Freie Schlagwörter
R package; Spatial dependence; Semiparametric models; Splines

Sprache Dokument
Englisch

Publikationsjahr
2022

Seitenangabe
S. R1-R15

Zeitschriftentitel
Region: the journal of ERSA, 9 (2022) 2

ISSN
2409-5370

Status
Veröffentlichungsversion; begutachtet

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.