SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(5.235 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-83218-3

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

A comprehensive analysis of acknowledgement texts in Web of Science: a case study on four scientific domains

[Zeitschriftenartikel]

Smirnova, Nina
Mayr, Philipp

Abstract

Analysis of acknowledgments is particularly interesting as acknowledgments may give information not only about funding, but they are also able to reveal hidden contributions to authorship and the researcher’s collaboration patterns, context in which research was conducted, and specific aspects of th... mehr

Analysis of acknowledgments is particularly interesting as acknowledgments may give information not only about funding, but they are also able to reveal hidden contributions to authorship and the researcher’s collaboration patterns, context in which research was conducted, and specific aspects of the academic work. The focus of the present research is the analysis of a large sample of acknowledgement texts indexed in the Web of Science (WoS) Core Collection. Record types "article" and "review" from four different scientific domains, namely social sciences, economics, oceanography and computer science, published from 2014 to 2019 in a scientific journal in English were considered. Six types of acknowledged entities, i.e., funding agency, grant number, individuals, university, corporation and miscellaneous, were extracted from the acknowledgement texts using a named entity recognition tagger and subsequently examined. A general analysis of the acknowledgement texts showed that indexing of funding information in WoS is incomplete. The analysis of the automatically extracted entities revealed differences and distinct patterns in the distribution of acknowledged entities of different types between different scientific domains. A strong association was found between acknowledged entity and scientific domain, and acknowledged entity and entity type. Only negligible correlation was found between the number of citations and the number of acknowledged entities. Generally, the number of words in the acknowledgement texts positively correlates with the number of acknowledged funding organizations, universities, individuals and miscellaneous entities. At the same time, acknowledgement texts with the larger number of sentences have more acknowledged individuals and miscellaneous categories.... weniger


Die Analyse von Danksagungstexten in wissenschaftlichen Veröffentlichungen ist besonders interessant, da sie nicht nur Aufschluss über die Finanzierung geben, sondern auch verborgene Beiträge zur Autorenschaft und zu den Kooperationsmustern der Forschenden, zum Kontext, in dem die Forschung durchgef... mehr

Die Analyse von Danksagungstexten in wissenschaftlichen Veröffentlichungen ist besonders interessant, da sie nicht nur Aufschluss über die Finanzierung geben, sondern auch verborgene Beiträge zur Autorenschaft und zu den Kooperationsmustern der Forschenden, zum Kontext, in dem die Forschung durchgeführt wurde, sowie zu bestimmten Aspekten der wissenschaftlichen Arbeit offenlegen können. Der Schwerpunkt dieser Publikation liegt auf der Analyse einer großen Stichprobe von Danksagungstexten, die in der Web of Science (WoS) Core Collection indexiert sind.... weniger

Klassifikation
Szientometrie, Bibliometrie, Informetrie

Freie Schlagwörter
Acknowledgements; Web of Science; Acknowledged entities; Named entity recognition

Sprache Dokument
Englisch

Publikationsjahr
2022

Zeitschriftentitel
Scientometrics (2022)

DOI
https://doi.org/10.1007/s11192-022-04554-9

ISSN
1588-2861

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0

FörderungGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491156185 / Funded by the German Research Foundation (DFG) - Project number 491156185


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.