SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.448 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-83099-1

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

What to do when the robots come? Non-formal education in jobs affected by automation

[Zeitschriftenartikel]

Koster, Sierdjan
Brunori, Claudia

Abstract

Purpose: Ongoing automation processes may render a fair share of the existing jobs redundant or change their nature. This begs the question to what extent employees affected invest in training in order to strengthen their labour market position in times of uncertainty. Given the different national l... mehr

Purpose: Ongoing automation processes may render a fair share of the existing jobs redundant or change their nature. This begs the question to what extent employees affected invest in training in order to strengthen their labour market position in times of uncertainty. Given the different national labour market regimes and institutions, there may be an important geographical dimension to the opportunities to cope with the challenges set by automation. The purpose of this study is to address both issues. Design/methodology/approach: Using data from the 2016 European labour Force Survey, the authors estimate with logit and multi-level regression analyses how the automation risk of a worker's job is associated with the propensity of following non-formal education/training. The authors allow this relationship to vary across European countries. Findings: The results show that employees in jobs vulnerable to automation invest relatively little in training. Also, there are significant differences across Europe in both the provision of training in general and the effect of automation on training provision. Originality/value: While there is quite a lot of research on the structural labour market effects of automation, relatively little is known about the actions that employees take to deal with the uncertainty they are faced with. This article aims to contribute to our understanding of such mechanisms underlying the structural macro-level labour-market dynamics.... weniger

Thesaurusschlagwörter
Ausbildung; Arbeitsmarkt; Automatisierung; Arbeitsplatz; Weiterbildung

Klassifikation
Industrie- und Betriebssoziologie, Arbeitssoziologie, industrielle Beziehungen
Arbeitsmarktforschung

Freie Schlagwörter
EU-LFS

Sprache Dokument
Englisch

Publikationsjahr
2021

Seitenangabe
S. 1397-1419

Zeitschriftentitel
International Journal of Manpower, 42 (2021) 8

DOI
https://doi.org/10.1108/IJM-06-2020-0314

ISSN
0143-7720

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.