SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(691.7 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-81399-6

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Representativeness and face-ism: Gender bias in image search

[Zeitschriftenartikel]

Ulloa, Roberto
Richter, Ana Carolina
Makhortykh, Mykola
Urman, Aleksandra
Kacperski, Celina Sylwia

Abstract

Implicit and explicit gender biases in media representations of individuals have long existed. Women are less likely to be represented in gender-neutral media content (representation bias), and their face-to-body ratio in images is often lower (face-ism bias). In this article, we look at representat... mehr

Implicit and explicit gender biases in media representations of individuals have long existed. Women are less likely to be represented in gender-neutral media content (representation bias), and their face-to-body ratio in images is often lower (face-ism bias). In this article, we look at representativeness and face-ism in search engine image results. We systematically queried four search engines (Google, Bing, Baidu, Yandex) from three locations, using two browsers and in two waves, with gender-neutral (person, intelligent person) and gendered (woman, intelligent woman, man, intelligent man) terminology, accessing the top 100 image results. We employed automatic identification for the individual’s gender expression (female/male) and the calculation of the face-to-body ratio of individuals depicted. We find that, as in other forms of media, search engine images perpetuate biases to the detriment of women, confirming the existence of the representation and face-ism biases. In-depth algorithmic debiasing with a specific focus on gender bias is overdue.... weniger

Thesaurusschlagwörter
Repräsentation; Experiment; Algorithmus; Bild; Online-Dienst; Frauenanteil; Suchmaschine; Geschlechterverteilung

Klassifikation
Frauen- und Geschlechterforschung
interaktive, elektronische Medien

Freie Schlagwörter
Algorithm auditing; face-ism; gender bias; image search; search engines

Sprache Dokument
Englisch

Publikationsjahr
2022

Seitenangabe
S. 3541-3567

Zeitschriftentitel
New Media & Society, 26 (2022) 6

DOI
https://doi.org/10.1177/14614448221100699

ISSN
1461-7315

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0

FörderungGefördert durch die Deutsche Forschungsgemeinschaft (DFG) - Projektnummer 491156185 / Funded by the German Research Foundation (DFG) - Project number 491156185


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.