Show simple item record

[journal article]

dc.contributor.authorHajimiri, Hadide
dc.date.accessioned2022-08-18T08:34:05Z
dc.date.available2022-08-18T08:34:05Z
dc.date.issued2022de
dc.identifier.issn2588-5502de
dc.identifier.urihttps://www.ssoar.info/ssoar/handle/document/80955
dc.description.abstractRecent studies on financial markets have demonstrated that technical analysis can help us effectively predict the stock market index trend. Business systems are widely used for stock market analysis. This paper uses a genetic algorithm (GA) to develop a stock market trading optimization system. Our proposed system can generate a decision-making strategy for buying, holding, and selling stocks for each day and generate high returns for each stock. The system consists of two stages: removing restricted stocks and producing a stock trading strategy. Accordingly, evolutionary computation, like GA, is highly promising because of its intelligence, flexibility, and search strength (fast and efficient). The multiple-objective nature of the utilized algorithm can be regarded as the center of gravity of the research question. The proper functioning or malfunctioning of the resulting portfolio management can be employed as a benchmark for selecting or discarding the algorithm. On the other hand, the research question is focused on the application of technical analysis indicators. Therefore, both aspects of the research question, namely the multiple-objective nature of the algorithm in terms of the analysis method and technical indicators in terms of features selected for analysis, must be taken into account.de
dc.languageende
dc.subject.ddcWirtschaftde
dc.subject.ddcEconomicsen
dc.subject.ddcNews media, journalism, publishingen
dc.subject.ddcPublizistische Medien, Journalismus,Verlagswesende
dc.subject.otheralgorithmic trading; genetic algorithms; stock index; technical analysisde
dc.titleUse of Genetic Algorithm in Algorithmic Trading to Optimize Technical Analysis in the International Stock Market (Forex)de
dc.description.reviewbegutachtet (peer reviewed)de
dc.description.reviewpeer revieweden
dc.source.journalJournal of Cyberspace Studies
dc.source.volume6de
dc.publisher.countryMISCde
dc.source.issue1de
dc.subject.classozInteractive, electronic Mediaen
dc.subject.classozNational Economyen
dc.subject.classozinteraktive, elektronische Mediende
dc.subject.classozVolkswirtschaftstheoriede
dc.subject.thesozAktienmarktde
dc.subject.thesozstock marketen
dc.subject.thesozstock exchangeen
dc.subject.thesozAlgorithmusde
dc.subject.thesozelectronic commerceen
dc.subject.thesozBörsede
dc.subject.thesozelektronischer Handelde
dc.subject.thesozalgorithmen
dc.rights.licenceCreative Commons - Attribution-NonCommercial 4.0en
dc.rights.licenceCreative Commons - Namensnennung, Nicht-kommerz. 4.0de
internal.statusformal und inhaltlich fertig erschlossende
internal.identifier.thesoz10035039
internal.identifier.thesoz10034972
internal.identifier.thesoz10046232
internal.identifier.thesoz10034970
dc.type.stockarticlede
dc.type.documentjournal articleen
dc.type.documentZeitschriftenartikelde
dc.source.pageinfo21-29de
internal.identifier.classoz1090301
internal.identifier.classoz1080404
internal.identifier.journal1339
internal.identifier.document32
internal.identifier.ddc070
internal.identifier.ddc330
dc.identifier.doihttps://doi.org/10.22059/jcss.2021.334193.1067de
dc.description.pubstatusPublished Versionen
dc.description.pubstatusVeröffentlichungsversionde
internal.identifier.licence32
internal.identifier.pubstatus1
internal.identifier.review1
internal.pdf.wellformedtrue
internal.pdf.encryptedfalse
ssoar.urn.registrationfalsede


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record