SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(621.8 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-79646-0

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

From German Internet Panel to Mannheim Corona Study: Adaptable probability-based online panel infrastructures during the pandemic

[Zeitschriftenartikel]

Cornesse, Carina
Krieger, Ulrich
Sohnius, Marie-Lou
Fikel, Marina
Friedel, Sabine
Rettig, Tobias
Wenz, Alexander
Juhl, Sebastian
Lehrer, Roni
Möhring, Katja
Naumann, Elias
Reifenscheid, Maximiliane
Blom, Annelies G.

Abstract

The outbreak of COVID-19 has sparked a sudden demand for fast, frequent and accurate data on the societal impact of the pandemic. This demand has highlighted a divide in survey data collection: Most probability-based social surveys, which can deliver the necessary data quality to allow valid inferen... mehr

The outbreak of COVID-19 has sparked a sudden demand for fast, frequent and accurate data on the societal impact of the pandemic. This demand has highlighted a divide in survey data collection: Most probability-based social surveys, which can deliver the necessary data quality to allow valid inference to the general population, are slow, infrequent and ill-equipped to survey people during a lockdown. Most non-probability online surveys, which can deliver large amounts of data fast, frequently and without interviewer contact, however, cannot provide the data quality needed for population inference. Well aware of this chasm in the data landscape, at the onset of the pandemic, we set up the Mannheim Corona Study (MCS), a rotating panel survey with daily data collection on the basis of the long-standing probability-based online panel infrastructure of the German Internet Panel (GIP). The MCS has provided academics and political decision makers with key information to understand the social and economic developments during the early phase of the pandemic. This paper describes the panel adaptation process, demonstrates the power of the MCS data on its own and when linked to other data sources, and evaluates the data quality achieved by the MCS fast-response methodology.... weniger

Thesaurusschlagwörter
ALLBUS; Mikrozensus; Epidemie; Datenqualität; Datenerfassung; Panel; Wahrscheinlichkeit; Stichprobe

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
COVID-19; Coronavirus; online panel; probability sample; social statistics; German General Social Survey - ALLBUS 2018 (ZA5272 v1.0.0)

Sprache Dokument
Englisch

Publikationsjahr
2021

Seitenangabe
S. 1411-1437

Zeitschriftentitel
Journal of the Royal Statistical Society, Series A (Statistics in Society) (2021)

DOI
https://doi.org/10.1111/rssa.12749

ISSN
1467-985X

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.