SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.12765/CPoS-2022-05

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Population Ageing and Future Demand for Old-Age and Disability Pensions in Germany - A Probabilistic Approach

[Zeitschriftenartikel]

Vanella, Patrizio
Rodriguez Gonzalez, Miguel
Wilke, Christina B.

Abstract

Industrialised economies are experiencing a decline in mortality alongside low fertility rates - a situation that puts social security systems under severe pressure. Population ageing is associated not only with longer periods of pension claims but also smaller cohorts eventually entering the labour... mehr

Industrialised economies are experiencing a decline in mortality alongside low fertility rates - a situation that puts social security systems under severe pressure. Population ageing is associated not only with longer periods of pension claims but also smaller cohorts eventually entering the labour market. This threatens the sustainability of pay-as-you-go social security systems for implementing or further improving appropriate reform measures; adequate forecasts of the future population structure are needed. We propose a probabilistic approach to forecast the number of pensions in Germany up to 2040. Our model considers trends in population development, labour force participation, and early retirement, as well as the effects of pension reforms. Principal component analysis is used to manage the high degree of complexity involved in forecasting trends in old-age and disability pension claims, which arises because of cross-correlations between old-age and disability pension rates, different age groups, and gender. Time series methods enable the inclusion of autocorrelations of the pension rate time series in the model. Monte Carlo simulation is used to quantify future risk. The latter is an important feature of our model, as the future development of the population and, eventually, the pension claims and the financial burden resulting from those claims, are highly stochastic. The model predicts that, in the median trajectory, the number of old-age pensions will increase by almost 5 million between 2017 and 2036, alongside increases in the number of disability pensions by 2036. These numbers take account of the increase in legal retirement ages as part of the 2007 pension reform. After the mid-2030s, however, a moderate decrease can be expected. The results show a clear need for further reforms, especially in the medium term.... weniger

Thesaurusschlagwörter
Bevölkerungsentwicklung; demographische Alterung; soziale Sicherung; Rentenanspruch; Prognose; Erwerbsbeteiligung; Frührentner; Rentenversicherung; Reform; Rentenalter; Erwerbsunfähigkeit; Rentenpolitik; Bundesrepublik Deutschland

Klassifikation
Bevölkerung
soziale Sicherung

Freie Schlagwörter
Stochastic forecasting; Principal component analysis; Time series analysis; Applied econometrics; Public pension systems; Social policy

Sprache Dokument
Englisch

Publikationsjahr
2022

Seitenangabe
S. 87-118

Zeitschriftentitel
Comparative Population Studies - Zeitschrift für Bevölkerungswissenschaft, 47 (2022)

ISSN
1869-8999

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung, Weitergabe unter gleichen Bedingungen 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.