SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(5.676Mb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-78533-1

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Life Cycle Energy and Environmental Assessment of the Thermal Insulation Improvement in Residential Buildings

[journal article]

Cusenza, Maria Anna
Gulotta, Teresa Maria
Mistretta, Marina
Cellura, Maurizio

Abstract

The refurbishment of the building stock is a key strategy towards the achievement of the climate and energy goals of the European Union. This study aims at evaluating the energy and environmental impacts associated with retrofitting a residential apartment to improve its vertical envelope thermal in... view more

The refurbishment of the building stock is a key strategy towards the achievement of the climate and energy goals of the European Union. This study aims at evaluating the energy and environmental impacts associated with retrofitting a residential apartment to improve its vertical envelope thermal insulation. Two insulation materials, stone wool and cellulose fibers, are compared. The life cycle assessment methodology is applied assuming 1 m2 of retrofitted vertical envelope as functional unit. Moreover, to estimate the net energy and environmental benefits achievable in the retrofitted scenario compared with the non-retrofitted one, a second analysis is performed in which the system boundaries are expanded to include the building operational phase, and 1 m2 of walkable floor per year is assumed as reference. The results show that the use of cellulose fibers involve lower impacts in most of the assessed categories compared to stone wool, except for abiotic resource depletion. In detail, the use of cellulose fibers allows to reduce the impact on climate change up to 20% and the consumption of primary energy up to 10%. The evaluation of the net energy and environmental benefits shows the effectiveness of the retrofit energy policies.... view less

Keywords
building; sustainability; energy; apartment; climate change; energy policy

Free Keywords
EU-SILC 2010; building retrofit; thermal insulation; bio-based materials; energy; life cycle assessment; sustainability

Document language
English

Publication Year
2021

Page/Pages
p. 1-21

Journal
Energies, 14 (2021) 12

Issue topic
Eco-Friendly Materials and Technologies for Low-Energy Buildings: Innovative Methodologies and Case Studies

DOI
https://doi.org/10.3390/en14123452

ISSN
1996-1073

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.