SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(externe Quelle)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.17645/mac.v9i4.4090

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Investigating Algorithmic Misconceptions in a Media Context: Source of a New Digital Divide?

[Zeitschriftenartikel]

Zarouali, Brahim
Helberger, Natali
de Vreese, Claes H.

Abstract

Algorithms are widely used in our data-driven media landscape. Many misconceptions have arisen about how these algorithms work and what they can do. In this study, we conducted a large representative survey (N = 2,106) in the Netherlands to explore algorithmic misconceptions. Results showed that a s... mehr

Algorithms are widely used in our data-driven media landscape. Many misconceptions have arisen about how these algorithms work and what they can do. In this study, we conducted a large representative survey (N = 2,106) in the Netherlands to explore algorithmic misconceptions. Results showed that a significant part of the general population holds (multiple) misconceptions about algorithms in the media. We found that erroneous beliefs about algorithms are more common among (1) older people (vs. younger people), (2) lower-educated people (vs. higher-educated), and (3) women (vs. men). In addition, it was found that people who had no specific sources to inform themselves about algorithms, and those relying on their friends/family for information, were more likely to have algorithmic misconceptions. Conversely, media channels, school, and having one’s own (online) experiences were found to be sources associated with having fewer algorithmic misconceptions. Theoretical implications are formulated in the context of algorithmic awareness and the digital divide. Finally, societal implications are discussed, such as the need for algorithmic literacy initiatives.... weniger

Klassifikation
Technikfolgenabschätzung
Medienökonomie, Medientechnik

Freie Schlagwörter
algorithmic awareness; algorithms; digital divide; misconceptions; technology

Sprache Dokument
Englisch

Publikationsjahr
2021

Seitenangabe
S. 134-144

Zeitschriftentitel
Media and Communication, 9 (2021) 4

Heftthema
Algorithmic Systems in the Digital Society

ISSN
2183-2439

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 

Diese Webseite verwendet Cookies. Die Datenschutzerklärung bietet Ihnen weitere Informationen, auch über Ihr Widerspruchsrecht.