SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.1186/s42409-022-00030-5

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Measurement instruments for fast and frequent data collection during the early phase of COVID-19 in Germany: reflections on the Mannheim Corona Study

[journal article]

Cornesse, Carina
Gonzalez Ocanto, Marisabel
Fikel, Marina
Friedel, Sabine
Krieger, Ulrich
Rettig, Tobias
Blom, Annelies G.

Abstract

The outbreak of the COVID-19 pandemic has led to a vast increase in the demand for fast, frequent, and multi-faceted data to study the impact of the pandemic on people's lives. Existing data collection infrastructures had to be adapted quickly during the early phase of the pandemic to meet this data... view more

The outbreak of the COVID-19 pandemic has led to a vast increase in the demand for fast, frequent, and multi-faceted data to study the impact of the pandemic on people's lives. Existing data collection infrastructures had to be adapted quickly during the early phase of the pandemic to meet this data demand. Our research group contributed to this by conducting the Mannheim Corona Study (MCS), a longitudinal probability-based online survey, in a daily rotating panel design that took place from March 20 through July 10, 2020. The fast-and-frequent panel data collection design of the MCS had numerous consequences for designing its questionnaires and choosing its measurement instruments. This included designing new instruments on the fly in the ever-changing pandemic environment, making efficient use of limited questionnaire space, and deciding on measurement frequencies in a structured manner under uncertain external conditions. In this report, we document the MCS approach to choosing measurement instruments fit for the purpose of fast and frequent data collection during the early phase of COVID-19 in Germany. We particularly highlight three examples of measurement instruments in the MCS and reflect on their measurement properties.... view less

Keywords
Federal Republic of Germany; epidemic; impact; attitude; anxiety; data capture; data acquisition; online survey; panel; questionnaire; measurement instrument; survey research

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
Online panel; COVID-19; Corona pandemic; Survey data; Contact tracing app; Mannheim Corona Study, GESIS Data Archive, ZA7745, data file version 1.0.0. https://doi.org/10.4232/1.13700

Document language
English

Publication Year
2022

Page/Pages
p. 1-7

Journal
Measurement Instruments for the Social Sciences, 4 (2022)

ISSN
2523-8930

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.