SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.12758/mda.2021.12

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Exploratory Likert Scaling as an Alternative to Exploratory Factor Analysis: Methodological Foundation and a Comparative Example Using an Innovative Scaling Procedure

[journal article]

Müller-Schneider, Thomas

Abstract

Identifying the dimensional structure of a set of items (e.g., when studying attitudes) is an important and intricate task in empirical social research. In research practice, exploratory factor analysis is usually employed for this purpose. Factor analysis, however, has known problems that may lead ... view more

Identifying the dimensional structure of a set of items (e.g., when studying attitudes) is an important and intricate task in empirical social research. In research practice, exploratory factor analysis is usually employed for this purpose. Factor analysis, however, has known problems that may lead to distorted results. One of its central methodological challenges is to select an adequate multidimensional factor space. Purely statistical decision heuristics to determine the number of factors to be extracted are of only limited value. As I will illus­trate using an example from lifestyle research, there is a considerable risk of fragmenting a complex unidimensional construct by extracting too many factors (overextraction) and splitting it across several factors. As an alternative to exploratory factor analysis, this paper presents an innovative scaling procedure called exploratory Likert scaling. This method­ologically based technique is designed to identify multiple unidimensional scales. It reli­ably finds even extensive latent dimensions without fragmenting them. To demonstrate this benefit, this paper takes up an example from lifestyle research and analyzes it using a novel R package for exploratory Likert scaling. The unidimensional scales are constructed se­quentially by means of bottom-up item selection. Exploratory Likert scaling owes its high analytical potential to the principle of multiple scaling, which is adopted from Mokken scale analysis and transferred to classical test theory.... view less

Keywords
scaling; factor analysis; test; theory; methodology; empirical social research; life style

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
dimensional analysis; classical test theory; multiple scaling; exploratory factor analysis; exploratory Likert scaling

Document language
English

Publication Year
2022

Page/Pages
p. 51-76

Journal
Methods, data, analyses : a journal for quantitative methods and survey methodology (mda), 16 (2022) 1

ISSN
2190-4936

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.