SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(636.3 KB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-77068-2

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Improving measurement-invariance assessments: correcting entrenched testing deficiencies

[Zeitschriftenartikel]

Hayduk, Leslie A.

Abstract

Background: Factor analysis historically focused on measurement while path analysis employed observed variables as though they were error-free. When factor- and path-analysis merged as structural equation modeling, factor analytic notions dominated measurement discussions – including assessments of ... mehr

Background: Factor analysis historically focused on measurement while path analysis employed observed variables as though they were error-free. When factor- and path-analysis merged as structural equation modeling, factor analytic notions dominated measurement discussions – including assessments of measurement invariance across groups. The factor analytic tradition fostered disregard of model testing and consequently entrenched this deficiency in measurement invariance assessments. Discussion: Applying contemporary model testing requirements to the so-called configural model initiating invariance assessments will improve future assessments but a substantial backlog of deficient assessments remain to be overcome. This article ● summarizes the issues, ● demonstrates the problem using a recent example, ● illustrates a superior model assessment strategy, ● and documents disciplinary entrenchment of inadequate testing as exemplified by the journal Organizational Research Methods. Summary: Employing the few methodologically and theoretically best, rather than precariously-multiple, indicators of latent variables increases the likelihood of achieving properly causally specified structural equation models capable of displaying measurement invariance. Just as evidence of invalidity trumps reliability, evidence of configural model misspecification trumps invariant estimates of misspecified coefficients.... weniger

Thesaurusschlagwörter
Faktorenanalyse; statistische Analyse; Analyseverfahren; Methode; Methodenforschung; Modell; Kausalität

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
Invariance; Factor analysis; Testing; Close fit; Structural equation model; SEM; International Social Survey Programme: Work Orientations I - ISSP 1989. GESIS Datenarchiv, Köln. ZA1840 Datenfile Version 1.0.0

Sprache Dokument
Englisch

Publikationsjahr
2016

Seitenangabe
S. 1-10

Zeitschriftentitel
BMC Medical Research Methodology, 16 (2016)

DOI
https://doi.org/10.1186/s12874-016-0230-3

ISSN
1471-2288

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.