SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(322.9Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-76684-6

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Top Incomes and Inequality Measurement: A Comparative Analysis of Correction Methods Using the EU SILC Data

[journal article]

Hlasny, Vladimir
Verme, Paolo

Abstract

It is sometimes observed and frequently assumed that top incomes in household surveys worldwide are poorly measured and that this problem biases the measurement of income inequality. This paper tests this assumption and compares the performance of reweighting and replacing methods designed to correc... view more

It is sometimes observed and frequently assumed that top incomes in household surveys worldwide are poorly measured and that this problem biases the measurement of income inequality. This paper tests this assumption and compares the performance of reweighting and replacing methods designed to correct inequality measures for top-income biases generated by data issues such as unit or item non-response. Results for the European Union’s Statistics on Income and Living Conditions survey indicate that survey response probabilities are negatively associated with income and bias the measurement of inequality downward. Correcting for this bias with reweighting, the Gini coefficient for Europe is revised upwards by 3.7 percentage points. Similar results are reached with replacing of top incomes using values from the Pareto distribution when the cut point for the analysis is below the 95th percentile. For higher cut points, results with replacing are inconsistent suggesting that popular parametric distributions do not mimic real data well at the very top of the income distribution.... view less

Keywords
income; household income; measurement; survey; inequality; income distribution; response behavior; estimation

Classification
Income Policy, Property Policy, Wage Policy
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
top incomes; inequality measures; survey non-response; Pareto distribution; parametric estimation; EU SILC

Document language
English

Publication Year
2018

Page/Pages
p. 1-21

Journal
Econometrics, 6 (2018) 2

Issue topic
Econometrics and Income Inequality

DOI
https://doi.org/10.3390/econometrics6020030

ISSN
2225-1146

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.