SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(962.9Kb)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-75518-2

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Predictivity of tourism demand data

[journal article]

Zhang, Yishou
Li, Gang
Muskat, Birgit
Vu, Quan Huy
Law, Rob

Abstract

As tourism researchers continue to search for solutions to determine the best possible forecasting performance, it is important to understand the maximum predictivity achieved by models, as well as how various data characteristics influence the maximum predictivity. Drawing on information theory, th... view more

As tourism researchers continue to search for solutions to determine the best possible forecasting performance, it is important to understand the maximum predictivity achieved by models, as well as how various data characteristics influence the maximum predictivity. Drawing on information theory, the predictivity of tourism demand data is quantitatively evaluated and beneficial for improving the performance of tourism demand forecasting. Empirical results from Hong Kong tourism demand data show that 1) the predictivity could largely help the researchers estimate the best possible forecasting performance and understand the influence of various data characteristics on the forecasting performance.; 2) the predictivity can be used to assess the short effect of external shock - such as SARS over tourism demand forecasting.... view less

Keywords
tourism; demand; prognosis; data capture; data quality

Classification
Leisure Research

Free Keywords
Data characteristics; Entropy; Predictivity; Tourism demand forecasting

Document language
English

Publication Year
2021

Journal
Annals of Tourism Research (2021) 89

DOI
https://doi.org/10.1016/j.annals.2021.103234

ISSN
0160-7383

Status
Preprint; peer reviewed

Licence
Creative Commons - Attribution 1.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.