SSOAR Logo
    • Deutsch
    • English
  • Deutsch 
    • Deutsch
    • English
  • Einloggen
SSOAR ▼
  • Home
  • Über SSOAR
  • Leitlinien
  • Veröffentlichen auf SSOAR
  • Kooperieren mit SSOAR
    • Kooperationsmodelle
    • Ablieferungswege und Formate
    • Projekte
  • Kooperationspartner
    • Informationen zu Kooperationspartnern
  • Informationen
    • Möglichkeiten für den Grünen Weg
    • Vergabe von Nutzungslizenzen
    • Informationsmaterial zum Download
  • Betriebskonzept
Browsen und suchen Dokument hinzufügen OAI-PMH-Schnittstelle
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Volltext herunterladen

(1.002 MB)

Zitationshinweis

Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-75286-2

Export für Ihre Literaturverwaltung

Bibtex-Export
Endnote-Export

Statistiken anzeigen
Weiterempfehlen
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

The R Package emdi for Estimating and Mapping Regionally Disaggregated Indicators

[Zeitschriftenartikel]

Kreutzmann, Ann-Kristin
Pannier, Sören
Rojas-Perilla, Natalia
Schmid, Timo
Templ, Matthias
Tzavidis, Nikos

Abstract

The R package emdi enables the estimation of regionally disaggregated indicators using small area estimation methods and includes tools for processing, assessing, and presenting the results. The mean of the target variable, the quantiles of its distribution, the headcount ratio, the poverty gap, the... mehr

The R package emdi enables the estimation of regionally disaggregated indicators using small area estimation methods and includes tools for processing, assessing, and presenting the results. The mean of the target variable, the quantiles of its distribution, the headcount ratio, the poverty gap, the Gini coefficient, the quintile share ratio, and customized indicators are estimated using direct and model-based estimation with the empirical best predictor (Molina and Rao 2010). The user is assisted by automatic estimation of datadriven transformation parameters. Parametric and semi-parametric, wild bootstrap for mean squared error estimation are implemented with the latter offering protection against possible misspecification of the error distribution. Tools for (a) customized parallel computing, (b) model diagnostic analyses, (c) creating high quality maps and (d) exporting the results to Excel and OpenDocument Spreadsheets are included. The functionality of the package is illustrated with example data sets for estimating the Gini coefficient and median income for districts in Austria.... weniger

Thesaurusschlagwörter
amtliche Statistik; Statistik; Befragung; Schätzung; Visualisierung; Software; Österreich

Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften

Freie Schlagwörter
survey statistics; parallel computing; small area estimation; European Union Statistics on Income and Living Conditions (EU-SILC) in Austria from 2006

Sprache Dokument
Englisch

Publikationsjahr
2019

Seitenangabe
S. 1-33

Zeitschriftentitel
Journal of Statistical Software, 91 (2019) 7

DOI
https://doi.org/10.18637/jss.v091.i07

ISSN
1548-7660

Status
Veröffentlichungsversion; begutachtet (peer reviewed)

Lizenz
Creative Commons - Namensnennung 3.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Impressum  |  Betriebskonzept  |  Datenschutzerklärung
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.