SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.18335/region.v8i1.316

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

The bias of avoiding spatial dynamic panel models: A tale of two research teams

[journal article]

Fischer, Lorenz Benedikt

Abstract

Many questions in urban and regional economics can be characterized as including both a spatial and a time dimension. However, often one of these dimensions is neglected in empirical work. This paper highlights the danger of methodological inertia, investigating the effect of neglecting the spatial ... view more

Many questions in urban and regional economics can be characterized as including both a spatial and a time dimension. However, often one of these dimensions is neglected in empirical work. This paper highlights the danger of methodological inertia, investigating the effect of neglecting the spatial or the time dimension when in fact both are important. A tale of two research teams, one living in a purely dynamic and the other in a purely spatial world of thinking, sets the scene. Because the researcher teams' choices to omit a dimension change the assumed optimal estimation strategies, the issue is more difficult to analyze than a typical omitted variables problem. First, the bias of omitting a relevant dimension is approximated analytically. Second, Monte Carlo simulations show that the neglected dimension projects onto the other, with potentially disastrous results. Interestingly, dynamic models are bound to overestimate autoregressive behavior whenever the spatial dimension is important. The same holds true for the opposite case. An application using the well-known, openly available cigarette demand data supports these findings.... view less

Classification
Political Economy

Free Keywords
Spatial dynamic panel data; Monte Carlo simulation; Spatial interaction; Dynamic model; Omitted variable bias

Document language
English

Publication Year
2021

Page/Pages
p. 153-180

Journal
Region: the journal of ERSA, 8 (2021) 1

ISSN
2409-5370

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-NonCommercial 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.