SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.18335/region.v7i2.295

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

A reproducible notebook to acquire, process and analyse satellite imagery: Exploring long-term urban changes

[journal article]

Chen, Meixu
Fahrner, Dominik
Arribas-Bel, Daniel
Rowe, Francisco

Abstract

Satellite imagery is often used to study and monitor Earth surface changes. The open availability and extensive temporal coverage of Landsat imagery has enabled changes in temperature, wind, vegetation and ice melting speed for a period of up to 46 years. Yet, the use of satellite imagery to study c... view more

Satellite imagery is often used to study and monitor Earth surface changes. The open availability and extensive temporal coverage of Landsat imagery has enabled changes in temperature, wind, vegetation and ice melting speed for a period of up to 46 years. Yet, the use of satellite imagery to study cities has remained underutilised, partly due to the lack of a methodological approach to capture features and changes in the urban environment. This notebook offers a framework based on Python tools to demonstrate how to batch-download high-resolution satellite imagery; and enable the extraction, analysis and visualisation of features of the built environment to capture long-term urban changes.... view less

Classification
Area Development Planning, Regional Research

Free Keywords
satellite imagery; image segmentation; urbanisation; cities; urban change; computational notebooks

Document language
English

Publication Year
2020

Page/Pages
p. R15-R46

Journal
Region: the journal of ERSA, 7 (2020) 2

ISSN
2409-5370

Status
Published Version; reviewed

Licence
Creative Commons - Attribution-NonCommercial 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.