SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.12765/CPoS-2021-03

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Approaches and Methods for Causal Analysis of Panel Data in the Area of Morbidity and Mortality

[journal article]

Hoffmann, Rasmus
Doblhammer, Gabriele

Abstract

We aim to give an overview of the state of the art of causal analysis of demographic issues related to morbidity and mortality. We will systematically introduce strategies to identify causal mechanisms, which are inherently linked to panel data from observational surveys and population registers. We... view more

We aim to give an overview of the state of the art of causal analysis of demographic issues related to morbidity and mortality. We will systematically introduce strategies to identify causal mechanisms, which are inherently linked to panel data from observational surveys and population registers. We will focus on health and mortality, and on the issues of unobserved heterogeneity and reverse causation between health and (1) retirement, (2) socio-economic status, and (3) characteristics of partnership and fertility history. The boundaries between demographic research on mortality and morbidity and the neighbouring disciplines epidemiology, public health and economy are often blurred. We will highlight the specific contribution of demography by reviewing methods used in the demographic literature. We classify these methods according to important criteria, such as a design-based versus model-based approach and control for unobserved confounders. We present examples from the literature for each of the methods and discuss the assumptions and the advantages and disadvantages of the methods for the identification of causal effects in demographic morbidity and mortality research. The differentiation between methods that control for unobserved confounders and those that do not reveal a fundamental difference between (1) methods that try to emulate a randomised experiment and have higher internal validity and (2) methods that attempt to achieve conditional independence by including all relevant factors in the model. The latter usually have higher external validity and require more assumptions and prior knowledge of relevant factors and their relationships. It is impossible to provide a general definition of the sort of validity that is more important, as there is always a trade-off between generalising the results to the population of interest and avoiding biases in the estimation of causal effects in the sample. We hope that our review will aid researchers in identifying strategies to answer their specific research question.... view less

Keywords
causal analysis; mortality; panel; method; causality; validity; morbidity; health

Classification
Population Studies, Sociology of Population
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Document language
English

Publication Year
2021

Page/Pages
p. 69-96

Journal
Comparative Population Studies - Zeitschrift für Bevölkerungswissenschaft, 46 (2021)

Issue topic
Identification of causal mechanisms in demographic research: the contribution of panel data

ISSN
1869-8999

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution-ShareAlike 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.