SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.17645/up.v6i1.3481

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

Trade-Offs between Urban Green Space and Densification: Balancing Outdoor Thermal Comfort, Mobility, and Housing Demand

[journal article]

Erlwein, Sabrina
Pauleit, Stephan

Abstract

Urban green spaces reduce elevated urban temperature through evaporative cooling and shading and are thus promoted as nature-based solutions to enhance urban climates. However, in growing cities, the supply of urban green space often conflicts with increasing housing demand. This study investigates ... view more

Urban green spaces reduce elevated urban temperature through evaporative cooling and shading and are thus promoted as nature-based solutions to enhance urban climates. However, in growing cities, the supply of urban green space often conflicts with increasing housing demand. This study investigates the interplay of densification and the availability of green space and its impact on human heat stress in summer. For the case of an open-midrise (local climate zone 5) urban redevelopment site in Munich, eight densification scenarios were elaborated with city planners and evaluated by microscale simulations in ENVI-met. The chosen scenarios consider varying building heights, different types of densification, amount of vegetation and parking space regulations. The preservation of existing trees has the greatest impact on the physical equivalent temperature (PET). Construction of underground car parking results in the removal of the tree population. Loss of all the existing trees due to parking space consumption leads to an average daytime PET increase of 5°C compared to the current situation. If the parking space requirement is halved, the increase in PET can be reduced to 1.3°C–1.7°C in all scenarios. The addition of buildings leads to a higher gain in living space than the addition of floors, but night-time thermal comfort is affected by poor ventilation if fresh air circulation is blocked. The protection of mature trees in urban redevelopment strategies will become more relevant in the changing climate. Alternative mobility strategies could help to reduce trade-offs between densification and urban greening.... view less

Classification
Area Development Planning, Regional Research

Free Keywords
ENVI-met simulations; densification; green infrastructure; outdoor thermal comfort

Document language
English

Publication Year
2021

Page/Pages
p. 5-19

Journal
Urban Planning, 6 (2021) 1

Issue topic
Urban Planning and Green Infrastructure

ISSN
2183-7635

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.