SSOAR Logo
    • Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
SSOAR ▼
  • Home
  • About SSOAR
  • Guidelines
  • Publishing in SSOAR
  • Cooperating with SSOAR
    • Cooperation models
    • Delivery routes and formats
    • Projects
  • Cooperation partners
    • Information about cooperation partners
  • Information
    • Possibilities of taking the Green Road
    • Grant of Licences
    • Download additional information
  • Operational concept
Browse and search Add new document OAI-PMH interface
JavaScript is disabled for your browser. Some features of this site may not work without it.

Download PDF
Download full text

(external source)

Citation Suggestion

Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.12758/mda.2020.05

Exports for your reference manager

Bibtex export
Endnote export

Display Statistics
Share
  • Share via E-Mail E-Mail
  • Share via Facebook Facebook
  • Share via Bluesky Bluesky
  • Share via Reddit reddit
  • Share via Linkedin LinkedIn
  • Share via XING XING

What Do You Think? Using Expert Opinion to Improve Predictions of Response Propensity Under a Bayesian Framework

[journal article]

Coffey, Stephanie
West, Brady T.
Wagner, James
Elliott, Michael R.

Abstract

Responsive survey designs introduce protocol changes to survey operations based on accumulating paradata. Case-level predictions, including response propensity, can be used to tailor data collection features in pursuit of cost or quality goals. Unfortunately, predictions based only on partial data f... view more

Responsive survey designs introduce protocol changes to survey operations based on accumulating paradata. Case-level predictions, including response propensity, can be used to tailor data collection features in pursuit of cost or quality goals. Unfortunately, predictions based only on partial data from the current round of data collection can be biased, leading to ineffective tailoring. Bayesian approaches can provide protection against this bias. Prior beliefs, which are generated from data external to the current survey implementation, contribute information that may be lacking from the partial current data. Those priors are then updated with the accumulating paradata. The elicitation of the prior beliefs, then, is an important characteristic of these approaches. While historical data for the same or a similar survey may be the most natural source for generating priors, eliciting prior beliefs from experienced survey managers may be a reasonable choice for new surveys, or when historical data are not available. Here, we fielded a questionnaire to survey managers, asking about expected attempt-level response rates for different subgroups of cases, and developed prior distributions for attempt-level response propensity model coefficients based on the mean and standard error of their responses. Then, using respondent data from a real survey, we compared the predictions of response propensity when the expert knowledge is incorporated into a prior to those based on a standard method that considers accumulating paradata only, as well as a method that incorporates historical survey data.... view less

Keywords
survey research; response behavior; data capture; data quality

Classification
Methods and Techniques of Data Collection and Data Analysis, Statistical Methods, Computer Methods

Free Keywords
Bayesian Analysis; Response Propensity; Expert Opinion; Elicitation of Priors; Responsive Survey Design

Document language
English

Publication Year
2020

Page/Pages
p. 159-194

Journal
Methods, data, analyses : a journal for quantitative methods and survey methodology (mda), 14 (2020) 2

ISSN
2190-4936

Status
Published Version; peer reviewed

Licence
Creative Commons - Attribution 4.0


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.
 

 


GESIS LogoDFG LogoOpen Access Logo
Home  |  Legal notices  |  Operational concept  |  Privacy policy
© 2007 - 2025 Social Science Open Access Repository (SSOAR).
Based on DSpace, Copyright (c) 2002-2022, DuraSpace. All rights reserved.